Improved Convex Underestimators and Hybrid Methods for Deterministic Global Optimization

用于确定性全局优化的改进凸低估器和混合方法

基本信息

  • 批准号:
    0330541
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2003
  • 资助国家:
    美国
  • 起止时间:
    2003-11-15 至 2008-10-31
  • 项目状态:
    已结题

项目摘要

Intellectual Content: The primary objective of this research is to develop novel theoretical, algorithmic and computational techniques for global optimization problems that arise in a variety of chemical engineering process design, synthesis and operations problems. It is the PI's intention to investigate (i) the development of a new class of improved convex underestimators for twice-continuously differentiable constrained nonlinear programming problems which will enhance the aBB approach and will be applied in a variety of phase equilibrium, design and synthesis problems; (ii) the theoretical and algorithmic development of a novel cut and splice refinement of the aBB convex subfunctional that will result in new types of tigher convex underestimators; (iii) the theoretical and algorithmic issues for the development of novel trigonometric convex underestimators for several classes of nonconvex trigonometric functions; and (iv) the development of new hydrid global optimization methods which combine the beneficial elements of the enhanced aBB deterministic global optimization framework with stochastic based approaches, and their distributed computing implementations, and their applications to medium and large-scale nonconvex optimization problems that arise in pooling and blending applications.Broader Impact: The integration of research and education will be enhanced through the introduction of lecture material and projects in the elective graduate course on Nonlinear Mixed Integer Optimization, and the required capstone senior design course Design, Synthesis and Optimization of Chemical Processes. The research will broaden the participation of underrepresented groups since it will aim at attracting female and minority students at the graduate level and the undergraduate senior theses level. The results of the work will be broadly disseminated to researchers in academia and industry through presentations at domestic and international meetings, scholarly refereed journal publications and through our web page (http://titan.princeton.edu) which will describe the approaches, implementations and results. Many petrochemical, chemical, pharmaceutical and services/software companies will benefit by the development of rigorous global optimization methods that can address important problems in process design and operations. This can lead to faster response to the market demands, and hence more efficient use of the processing facilities, which has direct benefit on the US economy.
智力内容:本研究的主要目标是为各种化学工程过程设计、合成和操作问题中出现的全局优化问题开发新的理论、算法和计算技术。PI打算研究(i)开发一类新的改进的凸低估器,用于两次连续可微约束非线性规划问题,这将增强aBB方法,并将应用于各种相平衡,设计和综合问题;(ii)对aBB凸子泛函进行新的切割和拼接改进的理论和算法开发,这将产生新型的更严格的凸低估器;(iii)针对几类非凸三角函数开发新的三角凸低估器的理论和算法问题;(iv)开发新的混合全局优化方法,将增强的aBB确定性全局优化框架的有益元素与基于随机的方法相结合,以及它们的分布式计算实现,以及它们在池化和混合应用中出现的中型和大规模非凸优化问题中的应用。更广泛的影响:通过在研究生选修课程《非线性混合整数优化》和必修的高级设计课程《化学过程的设计、合成与优化》中引入讲座材料和项目,将加强研究与教育的整合。这项研究将扩大代表性不足的群体的参与,因为它的目的是在研究生阶段和本科高级论文阶段吸引女性和少数民族学生。这项工作的结果将通过在国内和国际会议上的演讲、学术评审期刊出版物和我们的网页(http://titan.princeton.edu)广泛传播给学术界和工业界的研究人员,该网页将描述方法、实施和结果。许多石化、化工、制药和服务/软件公司将受益于严格的全球优化方法的发展,这些方法可以解决过程设计和操作中的重要问题。这可以更快地响应市场需求,从而更有效地利用加工设施,这对美国经济有直接好处。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Christodoulos Floudas其他文献

Christodoulos Floudas的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Christodoulos Floudas', 18)}}的其他基金

EAGER: Towards Multiscale Modeling, Optimization, and Uncertainty in Materials Design for CO2 Capture
EAGER:二氧化碳捕获材料设计中的多尺度建模、优化和不确定性
  • 批准号:
    1263165
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Novel Optimization Methods for Design, Synthesis, Supply Chain, and Uncertainty of Hybrid Biomass, Coal, and Natural Gas to Liquids, CBGTL, Processes
用于混合生物质、煤炭和天然气液化、CBGTL、工艺的设计、合成、供应链和不确定性的新颖优化方法
  • 批准号:
    1158849
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Integrated Framework for Operational Planning and Scheduling Under Uncertainty
不确定性下的运营规划和调度综合框架
  • 批准号:
    0856021
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CDI-Type II: MS-Omics Hub for Cyber-enabled Acceleration of Mass Spectrometry-based Metabolomics and Proteomics
CDI-Type II:MS-Omics 中心,用于网络加速基于质谱的代谢组学和蛋白质组学
  • 批准号:
    0941143
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Novel Methods and Computational Studies for Global Optimization
全局优化的新方法和计算研究
  • 批准号:
    0827907
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
GOALI: Short-term Scheduling Under Uncertainty: A Robust Optimization Framework
GOALI:不确定性下的短期调度:鲁棒优化框架
  • 批准号:
    0355336
  • 财政年份:
    2004
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
SGER:Performance Analysis of the BlueGene Class of Machines via the ASTRO-FOLD Protein Structure Prediction Framework
SGER:通过 ASTRO-FOLD 蛋白质结构预测框架对 BlueGene 类机器进行性能分析
  • 批准号:
    0401635
  • 财政年份:
    2004
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
FOCAPD 2004 Conference: Discovery through Product and Process Design
FOCAPD 2004 会议:通过产品和工艺设计进行发现
  • 批准号:
    0355399
  • 财政年份:
    2004
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
ITR: Collaborative Research: (ASE+NHS+EVS)-(sim+dmc+int): In Silico De Novo Protein Design: A Dynamically Data Driven, (DDDAS), Computational and Experimental Framework
ITR:协作研究:(ASE NHS EVS)-(sim dmc int):计算机从头蛋白质设计:动态数据驱动、(DDDAS)、计算和实验框架
  • 批准号:
    0426691
  • 财政年份:
    2004
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
QSB: Computational and Experimental Studies of Pathways in Yeast
QSB:酵母途径的计算和实验研究
  • 批准号:
    0222471
  • 财政年份:
    2002
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant

相似海外基金

CAREER: Interplay between Convex and Nonconvex Optimization for Control
职业:凸和非凸优化控制之间的相互作用
  • 批准号:
    2340713
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
CAREER: Isoperimetric and Minkowski Problems in Convex Geometric Analysis
职业:凸几何分析中的等周和闵可夫斯基问题
  • 批准号:
    2337630
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Number Theory, Potential Theory, and Convex Optimization
数论、势论和凸优化
  • 批准号:
    2401242
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CIF: Small: An Algebraic, Convex, and Scalable Framework for Kernel Learning with Activation Functions
CIF:小型:具有激活函数的核学习的代数、凸性和可扩展框架
  • 批准号:
    2323532
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CAREER: Harmonic Analysis, Ergodic Theory and Convex Geometry
职业:调和分析、遍历理论和凸几何
  • 批准号:
    2236493
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Jointly convex operator perspective map having the power monotone property.
具有幂单调性质的联合凸算子透视图。
  • 批准号:
    23K03141
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Collaborative Research: Consensus and Distributed Optimization in Non-Convex Environments with Applications to Networked Machine Learning
协作研究:非凸环境中的共识和分布式优化及其在网络机器学习中的应用
  • 批准号:
    2240789
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Analysis of algorithms for resouce allocation: an approach from market design and discrete convex analysis
资源分配算法分析:市场设计和离散凸分析的方法
  • 批准号:
    22KJ0717
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Harmonic Analysis in Convex Geometry
凸几何中的调和分析
  • 批准号:
    2247771
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CAREER: Demystifying Deep Machine Learning Models using Convex Optimization for Reliable AI
职业:使用凸优化揭开深度机器学习模型的神秘面纱,实现可靠的人工智能
  • 批准号:
    2236829
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了