FRG: Collaborative Research: Singularities, mixing and long time behavior in nonlinear evolution

FRG:协作研究:非线性演化中的奇异性、混合和长期行为

基本信息

  • 批准号:
    1159133
  • 负责人:
  • 金额:
    $ 30.06万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-07-01 至 2015-03-31
  • 项目状态:
    已结题

项目摘要

The project seeks to advance knowledge in mathematics of fluids, a subjectwith links to engineering, physics, chemistry and many other sciences. The major goal of the project is the development of new techniques to achieve breakthroughs in our understanding of fluid dynamics phenomena. The project research will address fundamental properties of the classical equations of fluid dynamics, qualitative properties of solutions, and modeling applications. The project focuses on three main directions. The first set of problems concerns global regularity vs finite time blow up that will be investigated for a range of fundamental equations of fluid mechanics. Axi-symmetric solutions for 3D Euler and Navier-Stokes will be considered, new potentially singular scenarios will be studied and new regularity criteria will be sought. Active scalars, such as surface quasi-geostrophic equation coming from atmospheric science, will also be analyzed -- here the effort will concentrate on studying properties of solutions, search for new Lyapunov functionals and novel regularity estimates. In the second direction, we will seek more detailed information on long time dynamics. This will include research on some long-open conjectures for 2D Euler equation, including possible mechanisms of inverse energy cascade, mixing and small scales formation. We will also work on passive scalar models and mixing properties of flows in this context. Biomixing by chemotaxis will be investigated as well, with an eye towards applications in ecology and marine biology. The third direction focuses on complex fluid models. In many applications - for instance, in studies of particle suspensions or solutions - the microscopic structure of particles in the fluid becomes important. The shape and interactions between the particles can be taken into account by adding kinetic equations to the fluid dynamics systems and introducing physically natural couplings. Analysis of solutions to such systems, their regularity and qualitative properties will be a part of the project work.Fluids are ubiquitous in nature, science and engineering. Diverse phenomena involving fluids appear in atmospheric and ocean science, astrophysics, chemistry and biology, and are described by partial differential equations of fluid mechanics. These equations are some of the most difficult partial differential equations to analyze. They describe a wide range of complex phenomena, are nonlinear, and usually nonlocal. Due to their complexity, even the classical equations such as 3D Euler and Navier-Stokes are far from well understood. The proposed research lies at the interface of several central areas of mathematics - partial differential equations, dynamical systems, functional analysis and Fourier analysis. This FRG project brings together several researchers that have been at the forefront of recent developments in mathematical fluid mechanics. Different participants bring different strengths to the project. It is expected that intensive collaboration within FRG framework will lead to development of new ideas and approaches and result in a burst of activity in mathematics of fluids. New techniques and tools developed are likely to have an impact in neighboring areas of mathematics, biology, and atmospheric science. An important part of the FRG activity will be training of junior researchers. Mathematics of fluid mechanics covers a broad range of effective techniques, which are applicable beyond fluids. The training activities will include a summer school, two workshops, group meetings, course development, research seminars and research projects for advanced undergraduate students. The principal investigators will advertise all training activities broadly, and strive to recruit talented, motivated, and diverse trainees. Special attention will be paid to recruitment of groups under represented in mathematics.
该项目旨在增进流体数学方面的知识,这是一个与工程、物理、化学和许多其他科学有关的学科。该项目的主要目标是开发新技术,以实现我们对流体动力学现象的理解的突破。该项目研究将解决经典流体动力学方程的基本性质、解的定性性质以及建模应用。该项目主要围绕三个方向展开。第一组问题涉及整体正则性与有限时间爆破,这些问题将在流体力学的一系列基本方程中进行研究。将考虑3D Euler和Navier-Stokes的轴对称解,将研究新的潜在奇异情形,并将寻求新的正则性标准。活动标量,如来自大气科学的地表准地转方程,也将被分析--这里的努力将集中在研究解的性质,寻找新的Lyapunov泛函和新的正则性估计。在第二个方向,我们将寻求关于长时间动力学的更详细的信息。这将包括对二维欧拉方程的一些长期开放的猜想的研究,包括逆能量级联、混合和小尺度形成的可能机制。我们还将在此背景下研究被动标量模型和流的混合性质。此外,还将研究趋化性的生物融合作用,着眼于在生态学和海洋生物学中的应用。第三个方向侧重于复杂的流体模型。在许多应用中,例如,在颗粒悬浮液或溶液的研究中,流体中颗粒的微观结构变得重要。通过将动力学方程添加到流体动力学系统并引入物理上的自然耦合,可以考虑颗粒之间的形状和相互作用。分析这类系统的解,它们的规律性和定性性质将是项目工作的一部分。流体在自然界、科学和工程中普遍存在。涉及流体的各种现象出现在大气和海洋科学、天体物理、化学和生物学中,并用流体力学的偏微分方程组来描述。这些方程是最难分析的偏微分方程式。它们描述了范围广泛的复杂现象,是非线性的,而且通常是非局部的。由于它们的复杂性,即使是三维欧拉和纳维-斯托克斯等经典方程也远未得到很好的理解。这项拟议的研究涉及数学的几个核心领域--偏微分方程式、动力系统、泛函分析和傅立叶分析。这个FRG项目汇集了几位走在数学流体力学最新发展前沿的研究人员。不同的参与者为项目带来了不同的优势。预计FRG框架内的密集合作将导致新的想法和方法的发展,并导致流体数学方面的活动激增。新开发的技术和工具可能会对邻近的数学、生物学和大气科学领域产生影响。联邦德国政府活动的一个重要部分将是初级研究人员的培训。流体力学的数学涵盖了广泛的有效技术,这些技术适用于流体以外的领域。培训活动将包括一个暑期班、两个工作坊、小组会议、课程开发、研究研讨会和面向高级本科生的研究项目。首席调查员将广泛宣传所有培训活动,努力招募有才华、有动力和多样化的受训人员。将特别注意招募在数学方面有代表性的群体。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alexander Kiselev其他文献

Small scale creation in active scalars
活动标量中的小规模创建
  • DOI:
    10.1007/978-3-030-54899
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alexander Kiselev
  • 通讯作者:
    Alexander Kiselev
From prey to predator: an in-situ observation of microplastic trophic transfer from emMytilus edulis/em to emAsterias rubens/em
从猎物到捕食者:紫贻贝(Mytilus edulis)到红海星(Asterias rubens)微塑料营养转移的原位观察
  • DOI:
    10.1016/j.marpolbul.2025.118211
  • 发表时间:
    2025-09-01
  • 期刊:
  • 影响因子:
    4.900
  • 作者:
    Alexander Kiselev;Anna Gebruk;Svetlana Pakhomova;Alexandra Drebezova;Alexander Tzetlin
  • 通讯作者:
    Alexander Tzetlin
Some Examples in One-Dimensional “Geometric” Scattering on Manifolds
流形上一维“几何”散射的一些例子
  • DOI:
    10.1006/jmaa.1997.5497
  • 发表时间:
    1997
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alexander Kiselev
  • 通讯作者:
    Alexander Kiselev
Transfer matrices and transport for Schrödinger operators
薛定谔算子的传递矩阵和传输
  • DOI:
    10.5802/aif.2034
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    F. Germinet;Alexander Kiselev;Serguei Tcheremchantsev
  • 通讯作者:
    Serguei Tcheremchantsev
Modified Prüfer and EFGP Transforms and the Spectral Analysis of One-Dimensional Schrödinger Operators
  • DOI:
    10.1007/s002200050346
  • 发表时间:
    1998-05-01
  • 期刊:
  • 影响因子:
    2.600
  • 作者:
    Alexander Kiselev;Yoram Last;Barry Simon
  • 通讯作者:
    Barry Simon

Alexander Kiselev的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alexander Kiselev', 18)}}的其他基金

Small Scale and Singularity Formation in Fluids
流体中的小尺度和奇点形成
  • 批准号:
    2306726
  • 财政年份:
    2023
  • 资助金额:
    $ 30.06万
  • 项目类别:
    Standard Grant
RTG: Training Tomorrow's Workforce in Analysis and Applications
RTG:培训未来的分析和应用劳动力
  • 批准号:
    2038056
  • 财政年份:
    2021
  • 资助金额:
    $ 30.06万
  • 项目类别:
    Continuing Grant
Small Scale and Singularity Formation in Fluids
流体中的小尺度和奇点形成
  • 批准号:
    2006372
  • 财政年份:
    2020
  • 资助金额:
    $ 30.06万
  • 项目类别:
    Standard Grant
Regularity, Blow Up and Mixing in Fluids
流体中的规律性、膨胀和混合
  • 批准号:
    1848790
  • 财政年份:
    2018
  • 资助金额:
    $ 30.06万
  • 项目类别:
    Standard Grant
Regularity, Blow Up and Mixing in Fluids
流体中的规律性、膨胀和混合
  • 批准号:
    1712294
  • 财政年份:
    2017
  • 资助金额:
    $ 30.06万
  • 项目类别:
    Standard Grant
Topics in Applied PDE
应用偏微分方程主题
  • 批准号:
    1412023
  • 财政年份:
    2014
  • 资助金额:
    $ 30.06万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Singularities, mixing and long time behavior in nonlinear evolution
FRG:协作研究:非线性演化中的奇异性、混合和长期行为
  • 批准号:
    1535653
  • 财政年份:
    2014
  • 资助金额:
    $ 30.06万
  • 项目类别:
    Standard Grant
Topics in Applied Partial Differential Equations
应用偏微分方程主题
  • 批准号:
    1453199
  • 财政年份:
    2014
  • 资助金额:
    $ 30.06万
  • 项目类别:
    Standard Grant
Topics in Applied Partial Differential Equations
应用偏微分方程主题
  • 批准号:
    1104415
  • 财政年份:
    2011
  • 资助金额:
    $ 30.06万
  • 项目类别:
    Standard Grant
Topics in Reaction-Diffusion and Fluid Mechanics
反应扩散和流体力学主题
  • 批准号:
    0653813
  • 财政年份:
    2008
  • 资助金额:
    $ 30.06万
  • 项目类别:
    Continuing Grant

相似海外基金

FRG: Collaborative Research: New birational invariants
FRG:协作研究:新的双有理不变量
  • 批准号:
    2244978
  • 财政年份:
    2023
  • 资助金额:
    $ 30.06万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2245017
  • 财政年份:
    2023
  • 资助金额:
    $ 30.06万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245111
  • 财政年份:
    2023
  • 资助金额:
    $ 30.06万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245077
  • 财政年份:
    2023
  • 资助金额:
    $ 30.06万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2244879
  • 财政年份:
    2023
  • 资助金额:
    $ 30.06万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: New Birational Invariants
FRG:合作研究:新的双理性不变量
  • 批准号:
    2245171
  • 财政年份:
    2023
  • 资助金额:
    $ 30.06万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2403764
  • 财政年份:
    2023
  • 资助金额:
    $ 30.06万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2245021
  • 财政年份:
    2023
  • 资助金额:
    $ 30.06万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245097
  • 财政年份:
    2023
  • 资助金额:
    $ 30.06万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245147
  • 财政年份:
    2023
  • 资助金额:
    $ 30.06万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了