Topics in Applied PDE

应用偏微分方程主题

基本信息

  • 批准号:
    1412023
  • 负责人:
  • 金额:
    $ 42万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-07-15 至 2018-06-30
  • 项目状态:
    已结题

项目摘要

The proposal focuses on three directions: intense structures in fluid flows, mixing by fluid flows, and effects of chemical attraction in biology, ecology and medicine. Fluid flows exhibit high degree of complexity and can easily develop intense structures. Better fundamental understanding of the mechanisms of creation of intense features in fluid flows is very important for many applications in engineering, weather forecasting and other fields. The first direction of the proposal seeks to study classical equations of fluid mechanics focussing on situations where intense fluid motion can develop spontaneously. Recent novel results obtained by the PI in this direction provide hopes for an essential advance in understanding these complex and important phenomena. In the second direction, a study of most efficient ways of mixing in fluid flow is proposed. Efficient mixing is of critical importance in many applications, ranging from combustion in engines to ecology. In the third direction, the PI will study the role of chemical sensing and chemical attraction for enhancement of reactions in biology. One situation where it is relevant involves healing of the body, where infected or injured tissues releases special compounds which attract immune system cells to fight the infection. Chemical attraction can also be an undesirable effect: some tumors are known to rely on this mechanism for their growth. The PI plans to develop new mathematical tools to analyze these more advanced and better predictive models. The project involves a training component, where junior researchers at all levels will be mentored as scholars and educators and will work on research projects under the guidance of the PI. The first main focus of the proposal is on studying solutions of the classical equations of fluid mechanics, such as incompressible Euler, Navier-Stokes and 2D Boussinesq system. Recent numerical simulations of Hou and Luo suggest a new scenario for singularity formation for solutions of the 3D Euler equation. The scenario is axi-symmetric, and singularity formation happens at the boundary. The scenario also applies for the 2D inviscid Boussinesq system. Inspired by the geometry of the scenario, the PI (jointly with Vladimir Sverak) has constructed examples of solutions of 2D Euler equation with double exponential growth in vorticity gradient. Such growth is known to be sharp. The PI intends to use new insights obtained in the construction to approach more complex and long open questions for 2D Boussinesq system and 3D Euler equation. Methods employed will include functional analysis, Fourier analysis, PDE techniques and novel comparison principles. The second direction concerns efficiency of mixing in fluids given constraints on fluid velocity. Bounds on the mixing rates under various types of constraints and boundary conditions as well as insight into the nature of best mixing flows will be sought. This area lies at the intersection of dynamical systems, PDE and Fourier analysis. The third direction involves effects of chemical attraction between reacting species on the rates of reaction. Chemical attraction will be modeled by the Keller-Segel and related nonlinear terms. The PI proposes to obtain qualitative results about the behavior of solutions in such systems, and to derive precise bounds describing the strength of the effect and its dependence on various key parameters. Sharp bounds on convergence to equlibirum for Fokker-Planck operators with certain natural classes of potentials will also be obtained.
该提案集中在三个方向:流体流动中的强烈结构,流体流动的混合,以及化学吸引力在生物学,生态学和医学中的作用。流体流动表现出高度的复杂性,并且可以容易地形成强烈的结构。更好地理解流体流动中强烈特征的形成机制对于工程、天气预报和其他领域的许多应用是非常重要的。该提案的第一个方向旨在研究流体力学的经典方程,重点是强烈的流体运动可以自发发展的情况。PI最近在这个方向上获得的新结果为理解这些复杂而重要的现象提供了重要的进展。在第二个方向上,提出了流体流动中最有效的混合方式的研究。有效的混合在许多应用中至关重要,从发动机燃烧到生态学。在第三个方向上,PI将研究化学传感和化学吸引力在增强生物学反应中的作用。其中一种相关的情况涉及身体的愈合,感染或受伤的组织释放特殊的化合物,吸引免疫系统细胞对抗感染。 化学吸引力也可能是一种不良影响:已知一些肿瘤依赖于这种机制来生长。PI计划开发新的数学工具来分析这些更先进、更好的预测模型。该项目包括一个培训部分,各级初级研究人员将作为学者和教育工作者接受辅导,并在PI的指导下开展研究项目。该提案的第一个主要重点是研究流体力学经典方程的解,例如不可压缩欧拉方程、纳维尔-斯托克斯方程和2D Boussinesq方程。最近的数值模拟侯和罗提出了一个新的方案奇点形成的三维欧拉方程的解决方案。该方案是轴对称的,奇点形成发生在边界处。该方案也适用于二维无粘Boussinesq系统。受该方案几何形状的启发,PI(与弗拉基米尔Sverak共同)构建了涡度梯度双指数增长的二维欧拉方程的解的示例。众所周知,这种增长是急剧的。PI打算使用在构建过程中获得的新见解来解决2D Boussinesq系统和3D Euler方程的更复杂和长期未决问题。所采用的方法将包括功能分析,傅立叶分析,偏微分方程技术和新的比较原则。第二个方向涉及在流体速度受到约束的情况下流体的混合效率。将寻求各种类型的约束和边界条件下混合率的界限,以及对最佳混合流本质的洞察。这一领域位于动力系统,偏微分方程和傅立叶分析的交叉点。第三个方向涉及反应物种之间的化学吸引力对反应速率的影响。化学吸引力将通过Keller-Segel和相关的非线性项来建模。PI建议获得有关此类系统中解决方案行为的定性结果,并推导出描述效果强度及其对各种关键参数的依赖性的精确界限。也将得到具有某些自然类势的Fokker-Planck算子收敛到平衡点的精确界。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alexander Kiselev其他文献

Small scale creation in active scalars
活动标量中的小规模创建
  • DOI:
    10.1007/978-3-030-54899
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alexander Kiselev
  • 通讯作者:
    Alexander Kiselev
From prey to predator: an in-situ observation of microplastic trophic transfer from emMytilus edulis/em to emAsterias rubens/em
从猎物到捕食者:紫贻贝(Mytilus edulis)到红海星(Asterias rubens)微塑料营养转移的原位观察
  • DOI:
    10.1016/j.marpolbul.2025.118211
  • 发表时间:
    2025-09-01
  • 期刊:
  • 影响因子:
    4.900
  • 作者:
    Alexander Kiselev;Anna Gebruk;Svetlana Pakhomova;Alexandra Drebezova;Alexander Tzetlin
  • 通讯作者:
    Alexander Tzetlin
Some Examples in One-Dimensional “Geometric” Scattering on Manifolds
流形上一维“几何”散射的一些例子
  • DOI:
    10.1006/jmaa.1997.5497
  • 发表时间:
    1997
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alexander Kiselev
  • 通讯作者:
    Alexander Kiselev
Transfer matrices and transport for Schrödinger operators
薛定谔算子的传递矩阵和传输
  • DOI:
    10.5802/aif.2034
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    F. Germinet;Alexander Kiselev;Serguei Tcheremchantsev
  • 通讯作者:
    Serguei Tcheremchantsev
Modified Prüfer and EFGP Transforms and the Spectral Analysis of One-Dimensional Schrödinger Operators
  • DOI:
    10.1007/s002200050346
  • 发表时间:
    1998-05-01
  • 期刊:
  • 影响因子:
    2.600
  • 作者:
    Alexander Kiselev;Yoram Last;Barry Simon
  • 通讯作者:
    Barry Simon

Alexander Kiselev的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alexander Kiselev', 18)}}的其他基金

Small Scale and Singularity Formation in Fluids
流体中的小尺度和奇点形成
  • 批准号:
    2306726
  • 财政年份:
    2023
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant
RTG: Training Tomorrow's Workforce in Analysis and Applications
RTG:培训未来的分析和应用劳动力
  • 批准号:
    2038056
  • 财政年份:
    2021
  • 资助金额:
    $ 42万
  • 项目类别:
    Continuing Grant
Small Scale and Singularity Formation in Fluids
流体中的小尺度和奇点形成
  • 批准号:
    2006372
  • 财政年份:
    2020
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant
Regularity, Blow Up and Mixing in Fluids
流体中的规律性、膨胀和混合
  • 批准号:
    1848790
  • 财政年份:
    2018
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant
Regularity, Blow Up and Mixing in Fluids
流体中的规律性、膨胀和混合
  • 批准号:
    1712294
  • 财政年份:
    2017
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Singularities, mixing and long time behavior in nonlinear evolution
FRG:协作研究:非线性演化中的奇异性、混合和长期行为
  • 批准号:
    1535653
  • 财政年份:
    2014
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant
Topics in Applied Partial Differential Equations
应用偏微分方程主题
  • 批准号:
    1453199
  • 财政年份:
    2014
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Singularities, mixing and long time behavior in nonlinear evolution
FRG:协作研究:非线性演化中的奇异性、混合和长期行为
  • 批准号:
    1159133
  • 财政年份:
    2012
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant
Topics in Applied Partial Differential Equations
应用偏微分方程主题
  • 批准号:
    1104415
  • 财政年份:
    2011
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant
Topics in Reaction-Diffusion and Fluid Mechanics
反应扩散和流体力学主题
  • 批准号:
    0653813
  • 财政年份:
    2008
  • 资助金额:
    $ 42万
  • 项目类别:
    Continuing Grant

相似国自然基金

普林斯顿应用数学指南(The Princeton Companion to Applied Mathematics )的翻译与出版
  • 批准号:
    12226506
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    数学天元基金项目

相似海外基金

Collaborative Research: RUI: IRES Track I: From fundamental to applied soft matter: research experiences in Mexico
合作研究:RUI:IRES 第一轨:从基础到应用软物质:墨西哥的研究经验
  • 批准号:
    2426728
  • 财政年份:
    2024
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant
REU Site: Applied Mathematics in Real World Problems
REU 网站:现实世界问题中的应用数学
  • 批准号:
    2349382
  • 财政年份:
    2024
  • 资助金额:
    $ 42万
  • 项目类别:
    Continuing Grant
RTG: Applied Algebra at the University of South Florida
RTG:南佛罗里达大学应用代数
  • 批准号:
    2342254
  • 财政年份:
    2024
  • 资助金额:
    $ 42万
  • 项目类别:
    Continuing Grant
RTG: Frontiers in Applied Analysis
RTG:应用分析前沿
  • 批准号:
    2342349
  • 财政年份:
    2024
  • 资助金额:
    $ 42万
  • 项目类别:
    Continuing Grant
Applied Abstract Elementary Classes
应用抽象初级班
  • 批准号:
    2348881
  • 财政年份:
    2024
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant
REU Site: Applied Artificial Intelligence for Advanced Applications
REU 网站:高级应用的应用人工智能
  • 批准号:
    2349370
  • 财政年份:
    2024
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant
Conference: ICSA 2024 Applied Statistical Symposium
会议:ICSA 2024应用统计研讨会
  • 批准号:
    2410953
  • 财政年份:
    2024
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant
REU Site: Computational and Applied Mathematics Program
REU 网站:计算和应用数学项目
  • 批准号:
    2348984
  • 财政年份:
    2024
  • 资助金额:
    $ 42万
  • 项目类别:
    Continuing Grant
REU Site: Undergraduate Research in Applied Analysis at West Virginia University
REU 网站:西弗吉尼亚大学应用分析本科生研究
  • 批准号:
    2349040
  • 财政年份:
    2024
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant
MRC International Statistics & Epidemiology Partnership (ISEP): Strengthening capacity in applied medical statisticians in sub-Saharan Africa
MRC国际统计
  • 批准号:
    MR/X019888/1
  • 财政年份:
    2024
  • 资助金额:
    $ 42万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了