Topics in Reaction-Diffusion and Fluid Mechanics
反应扩散和流体力学主题
基本信息
- 批准号:0653813
- 负责人:
- 金额:$ 13.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-06-01 至 2011-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Topics in Reaction-Diffusion and Fluid MechanicsAbstract of Proposed ResearchAlexander Kiselev The investigator intends to study a variety of mathematical questions that arise in the modeling of fluid flows and the interaction of flows and diffusion processes. They involve issues in dynamical systems, spectral theory and the existence and regularity of solutions of certain partial differential equations. One problem is to understand the enhancement of diffusion by fluid flow by studying certain advection-diffusion partial differential equations. The PI will investigate the link between the geometric and dynamical properties of flows and their efficiency in enhancing diffusion. Another topic is the existence and properties of the dissipative quasi-geostrophic and Navier-Stokes equations. A particular interest is the derivation of some new inequalities for the solutions of these equations and the investigation of the effects of nonlinear terms in the partial differential equations of fluid mechanics.The equations to be studied model important physical processes yet their mathematical properties are not well understood at present. They include issues in combustion, atmospheric and ocean modeling, aerodynamics and astrophysics as well as many biological models including morphogenesis. It is hoped the results will lead to better understanding of fundamental issues in science and engineering ranging from front formation and propagation to turbulence.
反应扩散和流体力学主题拟议研究摘要Alexander Kiselev研究人员打算研究流体流动建模以及流动和扩散过程相互作用中出现的各种数学问题。它们涉及动力系统,谱理论和某些偏微分方程解的存在性和正则性问题。一个问题是通过研究某些对流扩散偏微分方程来理解流体流动对扩散的增强。PI将研究流动的几何和动力学特性与其增强扩散的效率之间的联系。另一个主题是耗散准地转和Navier-Stokes方程的存在性和性质。特别感兴趣的是这些方程的解的一些新的不等式的推导和非线性项在流体力学的偏微分方程中的影响的调查,要研究的方程模型重要的物理过程,但其数学性质目前还没有得到很好的理解。它们包括燃烧,大气和海洋建模,空气动力学和天体物理学以及许多生物模型,包括形态发生的问题。希望这些结果将有助于更好地理解科学和工程中的基本问题,从前沿形成和传播到湍流。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexander Kiselev其他文献
Small scale creation in active scalars
活动标量中的小规模创建
- DOI:
10.1007/978-3-030-54899 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Alexander Kiselev - 通讯作者:
Alexander Kiselev
From prey to predator: an in-situ observation of microplastic trophic transfer from emMytilus edulis/em to emAsterias rubens/em
从猎物到捕食者:紫贻贝(Mytilus edulis)到红海星(Asterias rubens)微塑料营养转移的原位观察
- DOI:
10.1016/j.marpolbul.2025.118211 - 发表时间:
2025-09-01 - 期刊:
- 影响因子:4.900
- 作者:
Alexander Kiselev;Anna Gebruk;Svetlana Pakhomova;Alexandra Drebezova;Alexander Tzetlin - 通讯作者:
Alexander Tzetlin
Some Examples in One-Dimensional “Geometric” Scattering on Manifolds
流形上一维“几何”散射的一些例子
- DOI:
10.1006/jmaa.1997.5497 - 发表时间:
1997 - 期刊:
- 影响因子:0
- 作者:
Alexander Kiselev - 通讯作者:
Alexander Kiselev
Transfer matrices and transport for Schrödinger operators
薛定谔算子的传递矩阵和传输
- DOI:
10.5802/aif.2034 - 发表时间:
2004 - 期刊:
- 影响因子:0
- 作者:
F. Germinet;Alexander Kiselev;Serguei Tcheremchantsev - 通讯作者:
Serguei Tcheremchantsev
Modified Prüfer and EFGP Transforms and the Spectral Analysis of One-Dimensional Schrödinger Operators
- DOI:
10.1007/s002200050346 - 发表时间:
1998-05-01 - 期刊:
- 影响因子:2.600
- 作者:
Alexander Kiselev;Yoram Last;Barry Simon - 通讯作者:
Barry Simon
Alexander Kiselev的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alexander Kiselev', 18)}}的其他基金
Small Scale and Singularity Formation in Fluids
流体中的小尺度和奇点形成
- 批准号:
2306726 - 财政年份:2023
- 资助金额:
$ 13.2万 - 项目类别:
Standard Grant
RTG: Training Tomorrow's Workforce in Analysis and Applications
RTG:培训未来的分析和应用劳动力
- 批准号:
2038056 - 财政年份:2021
- 资助金额:
$ 13.2万 - 项目类别:
Continuing Grant
Small Scale and Singularity Formation in Fluids
流体中的小尺度和奇点形成
- 批准号:
2006372 - 财政年份:2020
- 资助金额:
$ 13.2万 - 项目类别:
Standard Grant
Regularity, Blow Up and Mixing in Fluids
流体中的规律性、膨胀和混合
- 批准号:
1848790 - 财政年份:2018
- 资助金额:
$ 13.2万 - 项目类别:
Standard Grant
Regularity, Blow Up and Mixing in Fluids
流体中的规律性、膨胀和混合
- 批准号:
1712294 - 财政年份:2017
- 资助金额:
$ 13.2万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Singularities, mixing and long time behavior in nonlinear evolution
FRG:协作研究:非线性演化中的奇异性、混合和长期行为
- 批准号:
1535653 - 财政年份:2014
- 资助金额:
$ 13.2万 - 项目类别:
Standard Grant
Topics in Applied Partial Differential Equations
应用偏微分方程主题
- 批准号:
1453199 - 财政年份:2014
- 资助金额:
$ 13.2万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Singularities, mixing and long time behavior in nonlinear evolution
FRG:协作研究:非线性演化中的奇异性、混合和长期行为
- 批准号:
1159133 - 财政年份:2012
- 资助金额:
$ 13.2万 - 项目类别:
Standard Grant
Topics in Applied Partial Differential Equations
应用偏微分方程主题
- 批准号:
1104415 - 财政年份:2011
- 资助金额:
$ 13.2万 - 项目类别:
Standard Grant
相似国自然基金
Exploring the Intrinsic Mechanisms of CEO Turnover and Market Reaction: An Explanation Based on Information Asymmetry
- 批准号:W2433169
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
基于Hydrodynamics-Reaction Kinetics耦合模型的厌氧膨胀床反应器三相流场数值模拟及生态-水力响应机制解析
- 批准号:51078108
- 批准年份:2010
- 资助金额:36.0 万元
- 项目类别:面上项目
相似海外基金
CAREER: Well-posedness and long-time behavior of reaction-diffusion and kinetic equations
职业:反应扩散和动力学方程的适定性和长期行为
- 批准号:
2337666 - 财政年份:2024
- 资助金额:
$ 13.2万 - 项目类别:
Continuing Grant
Long time dynamics and genealogies of stochastic reaction-diffusion systems
随机反应扩散系统的长时间动力学和系谱
- 批准号:
2348164 - 财政年份:2024
- 资助金额:
$ 13.2万 - 项目类别:
Continuing Grant
Deep Particle Algorithms and Advection-Reaction-Diffusion Transport Problems
深层粒子算法与平流反应扩散传输问题
- 批准号:
2309520 - 财政年份:2023
- 资助金额:
$ 13.2万 - 项目类别:
Standard Grant
Analysis of the effect of integral kernel shape on pattern formation in nonlocal reaction-diffusion equations
积分核形状对非局部反应扩散方程模式形成的影响分析
- 批准号:
23K13013 - 财政年份:2023
- 资助金额:
$ 13.2万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Development of reaction-diffusion based neural network systems
基于反应扩散的神经网络系统的开发
- 批准号:
23H00506 - 财政年份:2023
- 资助金额:
$ 13.2万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Behavior of nonstationary solutions to reaction-diffusion systems possessing continua of stationary solutions
具有连续稳定解的反应扩散系统的非平稳解的行为
- 批准号:
23K03176 - 财政年份:2023
- 资助金额:
$ 13.2万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CAREER: Reaction-Diffusion Kinetics with Tensor Networks
职业:张量网络的反应扩散动力学
- 批准号:
2239867 - 财政年份:2023
- 资助金额:
$ 13.2万 - 项目类别:
Standard Grant
Generalising Reaction-Diffusion and Turing Patterning Systems
概括反应扩散和图灵图案系统
- 批准号:
2747341 - 财政年份:2022
- 资助金额:
$ 13.2万 - 项目类别:
Studentship
On some nonlinear reaction diffusion equation arising in population genetics
群体遗传学中一些非线性反应扩散方程的探讨
- 批准号:
22K03369 - 财政年份:2022
- 资助金额:
$ 13.2万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Analysis of solution dynamics for time-fractional reaction-diffusion equations and systems
时间分数反应扩散方程和系统的解动力学分析
- 批准号:
22K13954 - 财政年份:2022
- 资助金额:
$ 13.2万 - 项目类别:
Grant-in-Aid for Early-Career Scientists