2012 Finite Element Rodeo Conference
2012年有限元牛仔竞技大会
基本信息
- 批准号:1160392
- 负责人:
- 金额:$ 0.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-04-01 至 2013-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This workshop project helps support the 2012 Finite Element Rodeo conference that takes place in March 2012 at Rice University. The workshop has attracted around one hundred participants mostly from the states of Texas and Louisiana. Registration fees for junior participants are waived. Topics covered in the workshop consist of recent advances in the theory and implementation of the general class of finite element methods, including mixed finite element methods, boundary element methods, discontinuous Galerkin methods and finite volume methods.As scientists attempt to solve more and more complex problems, there is an increasing need for accurate and robust numerical methods. Uncertainty, multiple physics, multiple time and spatial scales are examples of challenges associated with complex problems. Participants of the Finite Element Rodeo address those issues by formulation, rigorous analysis and efficient implementation of state-of-the-art numerical methods. The informal nature of the workshop makes it well-suited for introducing new research ideas. Applications discussed in the workshop cover many engineering fields including energy, environment and biomedicine. Networking and collaboration developing is encouraged among participants. A high number of under-represented groups is to be seen in the workshop participants.
这个研讨会项目有助于支持2012年3月在莱斯大学举行的2012年有限元牛仔竞技表演会议。 该研讨会吸引了大约100名与会者,主要来自德克萨斯州和路易斯安那州。低年级学员的注册费将被免除。研讨会的主题包括一般有限元方法的理论和实现的最新进展,包括混合有限元方法,边界元方法,间断Galerkin方法和有限体积方法。随着科学家试图解决越来越复杂的问题,对精确和鲁棒的数值方法的需求越来越大。不确定性、多重物理、多重时间和空间尺度是与复杂问题相关的挑战的例子。有限元牛仔竞技表演的参与者通过制定、严格分析和有效实施最先进的数值方法来解决这些问题。研讨会的非正式性质使其非常适合介绍新的研究思路。研讨会上讨论的应用涉及许多工程领域,包括能源,环境和生物医学。鼓励与会者之间建立联系和开展合作。在研讨会的与会者中,可以看到许多代表性不足的群体。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Beatrice Riviere其他文献
math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e1131" altimg="si424.svg" class="math"mip/mi/math-multigrid with partial smoothing: An efficient preconditioner for discontinuous Galerkin discretizations with modal bases
- DOI:
10.1016/j.cam.2021.113815 - 发表时间:
2022-03-01 - 期刊:
- 影响因子:2.600
- 作者:
Christopher Thiele;Beatrice Riviere - 通讯作者:
Beatrice Riviere
1D thermoembolization model using CT imaging data for porcine liver
使用猪肝脏 CT 成像数据的 1D 热栓塞模型
- DOI:
10.1038/s41598-025-06079-6 - 发表时间:
2025-07-01 - 期刊:
- 影响因子:3.900
- 作者:
Rohan Amare;Danielle Stolley;Steve Parrish;Megan Jacobsen;Rick R. Layman;Chimamanda Santos;Beatrice Riviere;Natalie Fowlkes;David Fuentes;Erik Cressman - 通讯作者:
Erik Cressman
A simple mathematical model of lipopolysaccharide signaling through toll-like receptor 4 results in complex insights on preconditioning
- DOI:
10.1016/j.jcrc.2007.10.006 - 发表时间:
2007-12-01 - 期刊:
- 影响因子:
- 作者:
Yekaterina Epshteyn;Beatrice Riviere;David Swigon;Yoram Vodovotz - 通讯作者:
Yoram Vodovotz
A Combined Mixed Hybrid and Hybridizable Discontinuous Galerkin Method for Darcy Flow and Transport
- DOI:
10.1007/s10915-024-02607-0 - 发表时间:
2024-07-08 - 期刊:
- 影响因子:3.300
- 作者:
Keegan L. A. Kirk;Beatrice Riviere - 通讯作者:
Beatrice Riviere
Beatrice Riviere的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Beatrice Riviere', 18)}}的其他基金
RTG: Numerical Mathematics and Scientific Computing
RTG:数值数学和科学计算
- 批准号:
2231482 - 财政年份:2023
- 资助金额:
$ 0.2万 - 项目类别:
Continuing Grant
Collaborative Research: Multidimensional Couplings for Flow and Transport in Porous Media
合作研究:多孔介质中流动和传输的多维耦合
- 批准号:
2111459 - 财政年份:2021
- 资助金额:
$ 0.2万 - 项目类别:
Standard Grant
GOALI: Numerical Methods for Multiphase Flows in Porous Media
GOALI:多孔介质中多相流的数值方法
- 批准号:
1913291 - 财政年份:2019
- 资助金额:
$ 0.2万 - 项目类别:
Standard Grant
Collaborative Research: Mathematical Modeling of Biological Processes in Edematous Tissue
合作研究:水肿组织生物过程的数学模型
- 批准号:
1312391 - 财政年份:2013
- 资助金额:
$ 0.2万 - 项目类别:
Continuing Grant
High Order in Time and Space Numerical Methods for Solving the Miscible Displacement Problem
求解混相位移问题的高阶时空数值方法
- 批准号:
1318348 - 财政年份:2013
- 资助金额:
$ 0.2万 - 项目类别:
Continuing Grant
High order numerical methods for multiphysics couplings
多物理场耦合的高阶数值方法
- 批准号:
0810422 - 财政年份:2008
- 资助金额:
$ 0.2万 - 项目类别:
Standard Grant
Coupling Complex Flow and Transport Phenomena
耦合复杂的流动和传输现象
- 批准号:
0506039 - 财政年份:2005
- 资助金额:
$ 0.2万 - 项目类别:
Standard Grant
相似国自然基金
Finite-time Lyapunov 函数和耦合系统的稳定性分析
- 批准号:11701533
- 批准年份:2017
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
相似海外基金
A hybrid Deep Learning-assisted Finite Element technique to predict dynamic failure evolution in advanced ceramics (DeLFE)
用于预测先进陶瓷动态失效演化的混合深度学习辅助有限元技术 (DeLFE)
- 批准号:
EP/Y004671/1 - 财政年份:2024
- 资助金额:
$ 0.2万 - 项目类别:
Research Grant
Continuous finite element methods for under resolved turbulence in compressible flow
可压缩流中未解析湍流的连续有限元方法
- 批准号:
EP/X042650/1 - 财政年份:2024
- 资助金额:
$ 0.2万 - 项目类别:
Research Grant
Comparative Study of Finite Element and Neural Network Discretizations for Partial Differential Equations
偏微分方程有限元与神经网络离散化的比较研究
- 批准号:
2424305 - 财政年份:2024
- 资助金额:
$ 0.2万 - 项目类别:
Continuing Grant
Using paired CT/MRI images to create finite element model of metaphyseal fracture in young children
使用配对 CT/MRI 图像创建幼儿干骺端骨折有限元模型
- 批准号:
2883532 - 财政年份:2023
- 资助金额:
$ 0.2万 - 项目类别:
Studentship
CAREER: Nonlinear Finite Element Manifolds for Improved Simulation of Shock-Dominated Turbulent Flows
职业:用于改进冲击主导的湍流模拟的非线性有限元流形
- 批准号:
2338843 - 财政年份:2023
- 资助金额:
$ 0.2万 - 项目类别:
Continuing Grant
Novel Finite Element Methods for Nonlinear Eigenvalue Problems - A Holomorphic Operator-Valued Function Approach
非线性特征值问题的新颖有限元方法 - 全纯算子值函数方法
- 批准号:
2109949 - 财政年份:2023
- 资助金额:
$ 0.2万 - 项目类别:
Standard Grant
Structure-Preserving Finite Element Methods for Incompressible Flow on Smooth Domains and Surfaces
光滑域和表面上不可压缩流动的保结构有限元方法
- 批准号:
2309425 - 财政年份:2023
- 资助金额:
$ 0.2万 - 项目类别:
Standard Grant
Development of a Prediction and Evaluation Method for Load Initiation Timing and Load Magnitude in Femoral Shaft Fractures Using Finite Element Analysis
利用有限元分析开发股骨干骨折载荷启动时间和载荷大小的预测和评估方法
- 批准号:
23K08691 - 财政年份:2023
- 资助金额:
$ 0.2万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Developments and Applications of Numerical Verification Methods for Finite Element Approximation of Differential Equations
微分方程有限元逼近数值验证方法的发展与应用
- 批准号:
23K03232 - 财政年份:2023
- 资助金额:
$ 0.2万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of a Hybrid Stochastic Finite Element Method with Enhanced Versatility for Uncertainty Quantification
开发一种增强通用性的混合随机有限元方法,用于不确定性量化
- 批准号:
23K04012 - 财政年份:2023
- 资助金额:
$ 0.2万 - 项目类别:
Grant-in-Aid for Scientific Research (C)