High order numerical methods for multiphysics couplings
多物理场耦合的高阶数值方法
基本信息
- 批准号:0810422
- 负责人:
- 金额:$ 34.19万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-09-15 至 2013-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The project results in the development of high order discontinuous Galerkin methods for complex flow and transport problems. The investigator analyzes and numerically studies different types of couplings, such as the coupling of Stokes or Navier-Stokes equations with miscible displacement and multiphase flow. Physically meaningful conditions are imposed at the interface between surface region and subsurface region. The mathematical advances in numerical analysis consist of proving existence and uniqueness of high order solutions of coupled systems and of rigorously deriving a priori error estimates with respect to the mesh size and the polynomial degree. Verification of the numerical solutions is performed through convergence studies, adaptivity with respect to the mesh size and the polynomial degree and comparisons with solutions obtained from other discretization techniques. A computational framework valid for two and three-dimensional problems is developed.This work deals with the modeling, analysis and simulation of multiphysics problems arising for instance in groundwater contamination through rivers and lakes. Groundwater becomes contaminated when human-made substances or sometimes naturally occurring substances are dissolved in waters recharging the groundwater. Often, as groundwater is connected with lakes and rivers, the pollution of these surface waters implies the pollution of aquifers. The investigator studies the interaction between surface flow and subsurface flow. Accurate and efficient numerical methods are developed and analyzed. Intensive numerical simulations and comparison with experimental data allow gaining further knowledge on multiphysics couplings. The interdisciplinary nature of the task fosters transfer of scientific knowledge across the engineering and science communities.This project advances discovery and understanding while promoting learning by training several graduate students and undergraduate students. An important educational activity is a week-long Summer Math School offered to high-school students entering grades 10-12. The event?s objective is to encourage students to pursue a career in science and mathematics.
该项目的结果在复杂的流动和运输问题的高阶间断伽辽金方法的发展。研究人员分析和数值研究不同类型的耦合,如斯托克斯或Navier-Stokes方程与混相位移和多相流的耦合。在表面区域和次表面区域之间的界面处施加物理上有意义的条件。数值分析中的数学进步包括证明耦合系统高阶解的存在性和唯一性,以及严格推导关于网格大小和多项式次数的先验误差估计。 数值解的验证是通过收敛性研究,相对于网格大小和多项式的程度和比较与其他离散技术得到的解决方案的自适应性。开发了适用于二维和三维问题的计算框架,这项工作涉及多物理场问题的建模、分析和模拟,例如河流和湖泊的地下水污染。当人造物质或有时是自然产生的物质溶解在补给地下水的沃茨中时,地下水就会受到污染。 由于地下水与湖泊和河流相连,这些地表沃茨的污染往往意味着含水层的污染。研究人员研究地表流和地下流之间的相互作用。 精确和有效的数值方法的开发和分析。密集的数值模拟和与实验数据的比较,可以获得更多的知识多物理场耦合。 该项目的跨学科性质促进了工程和科学界之间的科学知识转移。该项目通过培训几名研究生和本科生,在促进学习的同时,促进了发现和理解。 一项重要的教育活动是为进入10-12年级的高中生提供为期一周的夏季数学学校。活动?的目标是鼓励学生追求科学和数学的职业生涯。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Beatrice Riviere其他文献
math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e1131" altimg="si424.svg" class="math"mip/mi/math-multigrid with partial smoothing: An efficient preconditioner for discontinuous Galerkin discretizations with modal bases
- DOI:
10.1016/j.cam.2021.113815 - 发表时间:
2022-03-01 - 期刊:
- 影响因子:2.600
- 作者:
Christopher Thiele;Beatrice Riviere - 通讯作者:
Beatrice Riviere
1D thermoembolization model using CT imaging data for porcine liver
使用猪肝脏 CT 成像数据的 1D 热栓塞模型
- DOI:
10.1038/s41598-025-06079-6 - 发表时间:
2025-07-01 - 期刊:
- 影响因子:3.900
- 作者:
Rohan Amare;Danielle Stolley;Steve Parrish;Megan Jacobsen;Rick R. Layman;Chimamanda Santos;Beatrice Riviere;Natalie Fowlkes;David Fuentes;Erik Cressman - 通讯作者:
Erik Cressman
A simple mathematical model of lipopolysaccharide signaling through toll-like receptor 4 results in complex insights on preconditioning
- DOI:
10.1016/j.jcrc.2007.10.006 - 发表时间:
2007-12-01 - 期刊:
- 影响因子:
- 作者:
Yekaterina Epshteyn;Beatrice Riviere;David Swigon;Yoram Vodovotz - 通讯作者:
Yoram Vodovotz
A Combined Mixed Hybrid and Hybridizable Discontinuous Galerkin Method for Darcy Flow and Transport
- DOI:
10.1007/s10915-024-02607-0 - 发表时间:
2024-07-08 - 期刊:
- 影响因子:3.300
- 作者:
Keegan L. A. Kirk;Beatrice Riviere - 通讯作者:
Beatrice Riviere
Beatrice Riviere的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Beatrice Riviere', 18)}}的其他基金
RTG: Numerical Mathematics and Scientific Computing
RTG:数值数学和科学计算
- 批准号:
2231482 - 财政年份:2023
- 资助金额:
$ 34.19万 - 项目类别:
Continuing Grant
Collaborative Research: Multidimensional Couplings for Flow and Transport in Porous Media
合作研究:多孔介质中流动和传输的多维耦合
- 批准号:
2111459 - 财政年份:2021
- 资助金额:
$ 34.19万 - 项目类别:
Standard Grant
GOALI: Numerical Methods for Multiphase Flows in Porous Media
GOALI:多孔介质中多相流的数值方法
- 批准号:
1913291 - 财政年份:2019
- 资助金额:
$ 34.19万 - 项目类别:
Standard Grant
Collaborative Research: Mathematical Modeling of Biological Processes in Edematous Tissue
合作研究:水肿组织生物过程的数学模型
- 批准号:
1312391 - 财政年份:2013
- 资助金额:
$ 34.19万 - 项目类别:
Continuing Grant
High Order in Time and Space Numerical Methods for Solving the Miscible Displacement Problem
求解混相位移问题的高阶时空数值方法
- 批准号:
1318348 - 财政年份:2013
- 资助金额:
$ 34.19万 - 项目类别:
Continuing Grant
2012 Finite Element Rodeo Conference
2012年有限元牛仔竞技大会
- 批准号:
1160392 - 财政年份:2012
- 资助金额:
$ 34.19万 - 项目类别:
Standard Grant
Coupling Complex Flow and Transport Phenomena
耦合复杂的流动和传输现象
- 批准号:
0506039 - 财政年份:2005
- 资助金额:
$ 34.19万 - 项目类别:
Standard Grant
相似国自然基金
超声行波微流体驱动机理的试验研究
- 批准号:51075243
- 批准年份:2010
- 资助金额:39.0 万元
- 项目类别:面上项目
关于图像处理模型的目标函数构造及其数值方法研究
- 批准号:11071228
- 批准年份:2010
- 资助金额:32.0 万元
- 项目类别:面上项目
非管井集水建筑物取水机理的物理模拟及计算模型研究
- 批准号:40972154
- 批准年份:2009
- 资助金额:41.0 万元
- 项目类别:面上项目
孔隙介质中化学渗流溶解面非稳定性的理论分析与数值模拟实验研究
- 批准号:10872219
- 批准年份:2008
- 资助金额:35.0 万元
- 项目类别:面上项目
相似海外基金
High-order numerical methods for differential equations
微分方程的高阶数值方法
- 批准号:
RGPIN-2020-04663 - 财政年份:2022
- 资助金额:
$ 34.19万 - 项目类别:
Discovery Grants Program - Individual
High-order numerical methods for differential equations
微分方程的高阶数值方法
- 批准号:
RGPIN-2020-04663 - 财政年份:2021
- 资助金额:
$ 34.19万 - 项目类别:
Discovery Grants Program - Individual
High Order Numerical Methods for Problems in Electromagetics and Fluid Dynamics
电磁学和流体动力学问题的高阶数值方法
- 批准号:
RGPIN-2016-05300 - 财政年份:2021
- 资助金额:
$ 34.19万 - 项目类别:
Discovery Grants Program - Individual
High Order Methods for Direct Numerical Simulation of Incompressible Flows and Applications to Transition to Turbulence
不可压缩流直接数值模拟的高阶方法及其在湍流过渡中的应用
- 批准号:
RGPIN-2017-05320 - 财政年份:2021
- 资助金额:
$ 34.19万 - 项目类别:
Discovery Grants Program - Individual
Development of High-Order Conservative Numerical Methods for Electromagnetics in Metamaterials and Transport Flows in Environment
超材料电磁学和环境传输流高阶保守数值方法的发展
- 批准号:
RGPIN-2017-05666 - 财政年份:2021
- 资助金额:
$ 34.19万 - 项目类别:
Discovery Grants Program - Individual
Collaborative Research: Numerical Methods and Adaptive Algorithms for Sixth-Order Phase Field Models
合作研究:六阶相场模型的数值方法和自适应算法
- 批准号:
2110774 - 财政年份:2021
- 资助金额:
$ 34.19万 - 项目类别:
Standard Grant
Toward High-Order Numerical Methods for Problems Involving Moving Interfaces, Jumps and Conserved Quantities
针对涉及移动界面、跳跃和守恒量问题的高阶数值方法
- 批准号:
RGPIN-2016-04628 - 财政年份:2021
- 资助金额:
$ 34.19万 - 项目类别:
Discovery Grants Program - Individual
Collaborative Research: Numerical Methods and Adaptive Algorithms for Sixth-Order Phase Field Models
合作研究:六阶相场模型的数值方法和自适应算法
- 批准号:
2110768 - 财政年份:2021
- 资助金额:
$ 34.19万 - 项目类别:
Standard Grant
Toward High-Order Numerical Methods for Problems Involving Moving Interfaces, Jumps and Conserved Quantities
针对涉及移动界面、跳跃和守恒量问题的高阶数值方法
- 批准号:
RGPIN-2016-04628 - 财政年份:2020
- 资助金额:
$ 34.19万 - 项目类别:
Discovery Grants Program - Individual
High Order Methods for Direct Numerical Simulation of Incompressible Flows and Applications to Transition to Turbulence
不可压缩流直接数值模拟的高阶方法及其在湍流过渡中的应用
- 批准号:
RGPIN-2017-05320 - 财政年份:2020
- 资助金额:
$ 34.19万 - 项目类别:
Discovery Grants Program - Individual