GOALI: Numerical Methods for Multiphase Flows in Porous Media
GOALI:多孔介质中多相流的数值方法
基本信息
- 批准号:1913291
- 负责人:
- 金额:$ 30.54万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-01 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This collaborative project with the oil and gas industry aims to result in improved models of oil production from reservoirs. While there has been extensive work in academia on modeling subsurface fluid flows, many of the methods fall short in delivering accuracy and robustness on real reservoirs. Indeed, there are industrial constraints on the reservoir data, which this project will address by a close collaboration between university and industry partners. The project focuses on two-phase flow, for instance the flow of oil and water. Many of the techniques under development can be applied to black-oil (three-phase flow) or compositional models. One anticipated outcome of this project is an accelerated transfer of technology from academia to industry. Another impact is the training of students on industrial problems. State-of-the-art algorithms developed by faculty and students will be applied to solve challenging problems relevant to the industry. This could have the potential of transforming the current computational tools used by the industrial partner and beyond. This project has two main goals. First, a multi-numerics approach will be developed to produce fast and accurate numerical simulations of two-phase flow in complex reservoirs. The numerical model couples finite volume methods with discontinuous Galerkin methods on non-overlapping domains, and it utilizes optimal coupling conditions between the subdomains. The popularity of finite volume methods combined with the accuracy and flexibility of discontinuous Galerkin methods are key positive features of the coupled method. A second goal of the project is a new finite element scheme that employs physical unknowns, such as phase pressure and phase saturation. Using a compactness argument, the numerical approximations of the phase pressure and saturation are shown to converge strongly to the weak solution, even in the case of degenerate relative permeability coefficients. The convergence analysis is based on deriving bounds for the gradient of the phase pressure, using intermediate variables like global pressure. This new scheme is motivated by the industry constraints of using physical primary unknowns in reservoir simulations.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这项与油气行业的合作项目旨在改进油藏的产油量模型。虽然学术界在模拟地下流体流动方面做了大量的工作,但许多方法在真实储层的准确性和鲁棒性方面都存在不足。事实上,油藏数据存在行业限制,该项目将通过大学和行业合作伙伴之间的密切合作来解决这一问题。该项目侧重于两相流,例如油和水的流动。许多正在开发的技术可以应用于黑油(三相流)或成分模型。该项目的一个预期成果是加速技术从学术界向工业界的转移。另一个影响是培训学生解决工业问题。由教师和学生开发的最先进的算法将用于解决与该行业相关的具有挑战性的问题。这有可能改变目前工业合作伙伴使用的计算工具。这个项目有两个主要目标。首先,将开发一种多重数值方法,以产生快速和准确的复杂油藏两相流数值模拟。该数值模型将有限体积法与不连续伽辽金法耦合在非重叠区域上,并利用子区域之间的最优耦合条件。有限体积法的流行与不连续伽辽金法的准确性和灵活性相结合是该耦合方法的主要优点。该项目的第二个目标是采用一种新的有限元方案,该方案采用了物理未知数,如相压力和相饱和度。利用紧性论证,表明相压力和饱和度的数值近似强收敛于弱解,即使在相对渗透率系数退化的情况下也是如此。收敛分析的基础是利用全局压力等中间变量,推导相压力梯度的边界。这个新方案是由在油藏模拟中使用物理主要未知数的行业限制所驱动的。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Sequential Discontinuous Galerkin Method for Two-Phase Flow in Deformable Porous Media
- DOI:10.1016/j.cma.2022.115266
- 发表时间:2022-01
- 期刊:
- 影响因子:0
- 作者:B. Shen;B. Rivière
- 通讯作者:B. Shen;B. Rivière
A vertex scheme for two-phase flow in heterogeneous media
异质介质中两相流的顶点方案
- DOI:10.1016/j.jcp.2021.110778
- 发表时间:2022
- 期刊:
- 影响因子:4.1
- 作者:Joshaghani, M.S.;Girault, V.;Riviere, B.
- 通讯作者:Riviere, B.
A finite element method for degenerate two-phase flow in porous media. Part I: Well-posedness
多孔介质中简并两相流的有限元方法。
- DOI:10.1515/jnma-2020-0004
- 发表时间:2021
- 期刊:
- 影响因子:3
- 作者:Girault, Vivette;Riviere, Beatrice;Cappanera, Loic
- 通讯作者:Cappanera, Loic
A finite element method for degenerate two-phase flow in porous media. Part II: Convergence
多孔介质中简并两相流的有限元方法。
- DOI:10.1515/jnma-2020-0005
- 发表时间:2021
- 期刊:
- 影响因子:3
- 作者:Girault, Vivette;Riviere, Beatrice;Cappanera, Loic
- 通讯作者:Cappanera, Loic
A multinumerics scheme for incompressible two-phase flow
不可压缩两相流的多数值方案
- DOI:10.1016/j.cma.2020.113213
- 发表时间:2020
- 期刊:
- 影响因子:7.2
- 作者:Doyle, Bryan;Riviere, Beatrice;Sekachev, Michael
- 通讯作者:Sekachev, Michael
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Beatrice Riviere其他文献
math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e1131" altimg="si424.svg" class="math"mip/mi/math-multigrid with partial smoothing: An efficient preconditioner for discontinuous Galerkin discretizations with modal bases
- DOI:
10.1016/j.cam.2021.113815 - 发表时间:
2022-03-01 - 期刊:
- 影响因子:2.600
- 作者:
Christopher Thiele;Beatrice Riviere - 通讯作者:
Beatrice Riviere
1D thermoembolization model using CT imaging data for porcine liver
使用猪肝脏 CT 成像数据的 1D 热栓塞模型
- DOI:
10.1038/s41598-025-06079-6 - 发表时间:
2025-07-01 - 期刊:
- 影响因子:3.900
- 作者:
Rohan Amare;Danielle Stolley;Steve Parrish;Megan Jacobsen;Rick R. Layman;Chimamanda Santos;Beatrice Riviere;Natalie Fowlkes;David Fuentes;Erik Cressman - 通讯作者:
Erik Cressman
A simple mathematical model of lipopolysaccharide signaling through toll-like receptor 4 results in complex insights on preconditioning
- DOI:
10.1016/j.jcrc.2007.10.006 - 发表时间:
2007-12-01 - 期刊:
- 影响因子:
- 作者:
Yekaterina Epshteyn;Beatrice Riviere;David Swigon;Yoram Vodovotz - 通讯作者:
Yoram Vodovotz
A Combined Mixed Hybrid and Hybridizable Discontinuous Galerkin Method for Darcy Flow and Transport
- DOI:
10.1007/s10915-024-02607-0 - 发表时间:
2024-07-08 - 期刊:
- 影响因子:3.300
- 作者:
Keegan L. A. Kirk;Beatrice Riviere - 通讯作者:
Beatrice Riviere
Beatrice Riviere的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Beatrice Riviere', 18)}}的其他基金
RTG: Numerical Mathematics and Scientific Computing
RTG:数值数学和科学计算
- 批准号:
2231482 - 财政年份:2023
- 资助金额:
$ 30.54万 - 项目类别:
Continuing Grant
Collaborative Research: Multidimensional Couplings for Flow and Transport in Porous Media
合作研究:多孔介质中流动和传输的多维耦合
- 批准号:
2111459 - 财政年份:2021
- 资助金额:
$ 30.54万 - 项目类别:
Standard Grant
Collaborative Research: Mathematical Modeling of Biological Processes in Edematous Tissue
合作研究:水肿组织生物过程的数学模型
- 批准号:
1312391 - 财政年份:2013
- 资助金额:
$ 30.54万 - 项目类别:
Continuing Grant
High Order in Time and Space Numerical Methods for Solving the Miscible Displacement Problem
求解混相位移问题的高阶时空数值方法
- 批准号:
1318348 - 财政年份:2013
- 资助金额:
$ 30.54万 - 项目类别:
Continuing Grant
2012 Finite Element Rodeo Conference
2012年有限元牛仔竞技大会
- 批准号:
1160392 - 财政年份:2012
- 资助金额:
$ 30.54万 - 项目类别:
Standard Grant
High order numerical methods for multiphysics couplings
多物理场耦合的高阶数值方法
- 批准号:
0810422 - 财政年份:2008
- 资助金额:
$ 30.54万 - 项目类别:
Standard Grant
Coupling Complex Flow and Transport Phenomena
耦合复杂的流动和传输现象
- 批准号:
0506039 - 财政年份:2005
- 资助金额:
$ 30.54万 - 项目类别:
Standard Grant
相似海外基金
Conference: Mathematical models and numerical methods for multiphysics problems
会议:多物理问题的数学模型和数值方法
- 批准号:
2347546 - 财政年份:2024
- 资助金额:
$ 30.54万 - 项目类别:
Standard Grant
Theoretical Guarantees of Machine Learning Methods for High Dimensional Partial Differential Equations: Numerical Analysis and Uncertainty Quantification
高维偏微分方程机器学习方法的理论保证:数值分析和不确定性量化
- 批准号:
2343135 - 财政年份:2023
- 资助金额:
$ 30.54万 - 项目类别:
Standard Grant
Nonlinear logarithmic difference operators and their application to structure-preserving numerical methods
非线性对数差分算子及其在保结构数值方法中的应用
- 批准号:
23K17655 - 财政年份:2023
- 资助金额:
$ 30.54万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Topological-based numerical methods for real-world problems
针对现实世界问题的基于拓扑的数值方法
- 批准号:
2882199 - 财政年份:2023
- 资助金额:
$ 30.54万 - 项目类别:
Studentship
eMB: Collaborative Research: Mechanistic models for seasonal avian migration: Analysis, numerical methods, and data analytics
eMB:协作研究:季节性鸟类迁徙的机制模型:分析、数值方法和数据分析
- 批准号:
2325195 - 财政年份:2023
- 资助金额:
$ 30.54万 - 项目类别:
Standard Grant
Developments and Applications of Numerical Verification Methods for Finite Element Approximation of Differential Equations
微分方程有限元逼近数值验证方法的发展与应用
- 批准号:
23K03232 - 财政年份:2023
- 资助金额:
$ 30.54万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of numerical methods for solving unsteady shock waves stably and correctly and its application to shock wave interaction phenomena
稳定正确求解非定常冲击波数值方法的发展及其在冲击波相互作用现象中的应用
- 批准号:
23KJ0981 - 财政年份:2023
- 资助金额:
$ 30.54万 - 项目类别:
Grant-in-Aid for JSPS Fellows
CAREER: Numerical Analysis for Meshfree and Particle Methods via Nonlocal Models
职业:通过非局部模型进行无网格和粒子方法的数值分析
- 批准号:
2240180 - 财政年份:2023
- 资助金额:
$ 30.54万 - 项目类别:
Continuing Grant
Robust and Efficient Numerical Methods for Wave Equations in the Time Domain: Nonlinear and Multiscale Problems
时域波动方程的鲁棒高效数值方法:非线性和多尺度问题
- 批准号:
2309687 - 财政年份:2023
- 资助金额:
$ 30.54万 - 项目类别:
Standard Grant
Innovation of Numerical Methods for High-Dimensional Partial Differential Equations
高维偏微分方程数值方法的创新
- 批准号:
2309378 - 财政年份:2023
- 资助金额:
$ 30.54万 - 项目类别:
Standard Grant