Collaborative Research: Mathematical Modeling of Biological Processes in Edematous Tissue

合作研究:水肿组织生物过程的数学模型

基本信息

  • 批准号:
    1312391
  • 负责人:
  • 金额:
    $ 22.8万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-10-01 至 2017-09-30
  • 项目状态:
    已结题

项目摘要

This project aims to better understand the processes behind the decrease of intestinal muscle contractility resulting from intestinal interstitial edema. Intestinal edema refers to the excess accumulation of fluid in the interstitial spaces of the intestinal wall tissue. The project focuses on two separate scales. At the continuum scale, the intestinal layer is modeled as an inhomogeneous poroelastic medium that undergoes finite deformation. Intestinal transit is modeled as Navier-Stokes flow within the intestinal cavity and is coupled to the intestinal wall model in a fluid-structure interaction algorithm. Coupling conditions include the continuity of normal fluid flux, the balance of forces and the Beavers-Joseph-Saffman condition, across the interface between the lumen and intestinal layer. At the microscale, a detailed biochemical-mechanical mathematical model of a smooth muscle cell is developed. The model focuses on the regulation of myosin light chain and its phosphorylation, which have been linked to intestinal muscle contractility. Experimental data from both animal and cell models are to be incorporated into the development of the mathematical models at both scales.Intestinal edema can arise in patients with gastroschisis, inflammatory bowel disease and cirrhosis, as well as in patients receiving resuscitative fluid treatments after traumatic injuries. The main problem for a patient with intestinal edema is that the condition causes ileus, a decrease in intestinal transit due to decreased intestinal smooth muscle contractility. Decreased intestinal transit often leads to longer hospital stays and recovery times for patients and in extreme cases can be fatal. The link between edema and ileus is unknown, and is thus the motivation for developing mathematical models to explore this phenomenon. Results from this project will improve understanding of edema formation and its effect on intestinal muscle contractility and intestinal transit. The models will be utilized to simulate treatment scenarios to assist experimentalists with their goal of preventing ileus when edema forms. There are only a few drugs available to treat ileus; they have limited effectiveness and all target the enteric or central nervous system. This research will be integrated into a Summer math program for high school students. In addition, an important aspect of this collaborative project is the interdisciplinary research experience the postdoctoral fellows and students will obtain as a result of their interactions with the mathematicians and experimentalists.
该项目旨在更好地了解肠道间质水肿引起的肠肌收缩能力下降背后的过程。肠水肿指的是肠壁组织间质中液体的过度积聚。该项目侧重于两个不同的规模。在连续介质尺度上,肠层被模拟为经历有限变形的非均匀孔隙弹性介质。在流固耦合算法中,肠道传输被模拟为肠腔内的Navier-Stokes流动,并与肠壁模型相耦合。耦合条件包括正常液体流量的连续性、力的平衡和Beivers-Joseph-Saffman条件,跨越管腔和肠层之间的界面。在微观尺度上,建立了一个详细的平滑肌细胞生化力学数学模型。该模型侧重于肌球蛋白轻链及其磷酸化的调节,而肌球蛋白轻链及其磷酸化与肠道肌肉收缩能力有关。来自动物和细胞模型的实验数据将被纳入到两个尺度的数学模型的开发中。腹裂、炎症性肠病和肝硬变的患者以及在创伤后接受复苏液体治疗的患者可能会出现肠水肿。肠性浮肿患者的主要问题是引起肠梗阻,肠梗阻是由于肠道平滑肌收缩能力降低而导致的肠道传输功能的减少。肠道转运减少通常会导致患者住院时间和恢复时间更长,在极端情况下可能是致命的。水肿和肠梗阻之间的联系是未知的,因此是开发数学模型来探索这一现象的动机。该项目的结果将提高对水肿形成及其对肠道肌肉收缩和肠道运输的影响的了解。这些模型将被用来模拟治疗方案,以帮助实验者实现他们的目标,即当浮肿形成时预防肠梗阻。治疗肠梗阻的药物屈指可数;它们的疗效有限,而且都针对肠道或中枢神经系统。这项研究将被整合到针对高中生的暑期数学项目中。此外,这个合作项目的一个重要方面是博士后研究员和学生通过与数学家和实验者的互动而获得的跨学科研究经验。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Beatrice Riviere其他文献

1D thermoembolization model using CT imaging data for porcine liver
使用猪肝脏 CT 成像数据的 1D 热栓塞模型
  • DOI:
    10.1038/s41598-025-06079-6
  • 发表时间:
    2025-07-01
  • 期刊:
  • 影响因子:
    3.900
  • 作者:
    Rohan Amare;Danielle Stolley;Steve Parrish;Megan Jacobsen;Rick R. Layman;Chimamanda Santos;Beatrice Riviere;Natalie Fowlkes;David Fuentes;Erik Cressman
  • 通讯作者:
    Erik Cressman
A simple mathematical model of lipopolysaccharide signaling through toll-like receptor 4 results in complex insights on preconditioning
  • DOI:
    10.1016/j.jcrc.2007.10.006
  • 发表时间:
    2007-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    Yekaterina Epshteyn;Beatrice Riviere;David Swigon;Yoram Vodovotz
  • 通讯作者:
    Yoram Vodovotz
A Combined Mixed Hybrid and Hybridizable Discontinuous Galerkin Method for Darcy Flow and Transport
  • DOI:
    10.1007/s10915-024-02607-0
  • 发表时间:
    2024-07-08
  • 期刊:
  • 影响因子:
    3.300
  • 作者:
    Keegan L. A. Kirk;Beatrice Riviere
  • 通讯作者:
    Beatrice Riviere

Beatrice Riviere的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Beatrice Riviere', 18)}}的其他基金

RTG: Numerical Mathematics and Scientific Computing
RTG:数值数学和科学计算
  • 批准号:
    2231482
  • 财政年份:
    2023
  • 资助金额:
    $ 22.8万
  • 项目类别:
    Continuing Grant
Collaborative Research: Multidimensional Couplings for Flow and Transport in Porous Media
合作研究:多孔介质中流动和传输的多维耦合
  • 批准号:
    2111459
  • 财政年份:
    2021
  • 资助金额:
    $ 22.8万
  • 项目类别:
    Standard Grant
GOALI: Numerical Methods for Multiphase Flows in Porous Media
GOALI:多孔介质中多相流的数值方法
  • 批准号:
    1913291
  • 财政年份:
    2019
  • 资助金额:
    $ 22.8万
  • 项目类别:
    Standard Grant
High Order in Time and Space Numerical Methods for Solving the Miscible Displacement Problem
求解混相位移问题的高阶时空数值方法
  • 批准号:
    1318348
  • 财政年份:
    2013
  • 资助金额:
    $ 22.8万
  • 项目类别:
    Continuing Grant
2012 Finite Element Rodeo Conference
2012年有限元牛仔竞技大会
  • 批准号:
    1160392
  • 财政年份:
    2012
  • 资助金额:
    $ 22.8万
  • 项目类别:
    Standard Grant
High order numerical methods for multiphysics couplings
多物理场耦合的高阶数值方法
  • 批准号:
    0810422
  • 财政年份:
    2008
  • 资助金额:
    $ 22.8万
  • 项目类别:
    Standard Grant
Coupling Complex Flow and Transport Phenomena
耦合复杂的流动和传输现象
  • 批准号:
    0506039
  • 财政年份:
    2005
  • 资助金额:
    $ 22.8万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Conference: Mathematical Sciences Institutes Diversity Initiative
合作研究:会议:数学科学研究所多样性倡议
  • 批准号:
    2317573
  • 财政年份:
    2024
  • 资助金额:
    $ 22.8万
  • 项目类别:
    Continuing Grant
Collaborative Research: Conference: Great Lakes Mathematical Physics Meetings 2024-2025
合作研究:会议:2024-2025 年五大湖数学物理会议
  • 批准号:
    2401257
  • 财政年份:
    2024
  • 资助金额:
    $ 22.8万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Small: Mathematical and Algorithmic Foundations of Multi-Task Learning
协作研究:CIF:小型:多任务学习的数学和算法基础
  • 批准号:
    2343599
  • 财政年份:
    2024
  • 资助金额:
    $ 22.8万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Small: Mathematical and Algorithmic Foundations of Multi-Task Learning
协作研究:CIF:小型:多任务学习的数学和算法基础
  • 批准号:
    2343600
  • 财政年份:
    2024
  • 资助金额:
    $ 22.8万
  • 项目类别:
    Standard Grant
Collaborative Research: Conference: Mathematical Sciences Institutes Diversity Initiative
合作研究:会议:数学科学研究所多样性倡议
  • 批准号:
    2317570
  • 财政年份:
    2024
  • 资助金额:
    $ 22.8万
  • 项目类别:
    Continuing Grant
Collaborative Research: Conference: Great Lakes Mathematical Physics Meetings 2024-2025
合作研究:会议:2024-2025 年五大湖数学物理会议
  • 批准号:
    2401258
  • 财政年份:
    2024
  • 资助金额:
    $ 22.8万
  • 项目类别:
    Standard Grant
Collaborative Research: Conference: Mathematical Sciences Institutes Diversity Initiative
合作研究:会议:数学科学研究所多样性倡议
  • 批准号:
    2317572
  • 财政年份:
    2024
  • 资助金额:
    $ 22.8万
  • 项目类别:
    Continuing Grant
Collaborative Research: Conference: Mathematical Sciences Institutes Diversity Initiative
合作研究:会议:数学科学研究所多样性倡议
  • 批准号:
    2317569
  • 财政年份:
    2024
  • 资助金额:
    $ 22.8万
  • 项目类别:
    Continuing Grant
Collaborative Research: Conference: Mathematical Sciences Institutes Diversity Initiative
合作研究:会议:数学科学研究所多样性倡议
  • 批准号:
    2317571
  • 财政年份:
    2024
  • 资助金额:
    $ 22.8万
  • 项目类别:
    Standard Grant
Collaborative Research: Supporting Pre-Service Teachers Mathematical Discourse through Co-Design of Teaching Simulation Tools
协作研究:通过教学模拟工具的共同设计支持职前教师的数学话语
  • 批准号:
    2315437
  • 财政年份:
    2023
  • 资助金额:
    $ 22.8万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了