NSF Nanosystems Engineering Research Center for Translational Applications of Nanoscale Multiferroic Systems TANMS

NSF 纳米系统纳米级多铁系统转化应用工程研究中心 TANMS

基本信息

  • 批准号:
    1160504
  • 负责人:
  • 金额:
    $ 1850万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Cooperative Agreement
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-09-01 至 2023-11-30
  • 项目状态:
    已结题

项目摘要

NSF Nanosystems Engineering Research Center for Translational Applications ofNanoscaleMultiferroic Systems (T ANMS),Greg P. Carman,University of California Los Angeles (Lead), University of California Berkeley, CornellUniversity, California State University Northridge, and ETH Zurich Switzerland (Foreign)ABSTRACTTranslational Applications of Nanoscale Multiferroic Systems (TANMS) has three primary goals. The first goal is to transition the unique discoveries that the TANMS team has made on nanoscale multiferroic materials, i.e. control of magnetic spin structures with electric fields, into three applications: memory devices, miniaturized antenna systems, and nanoscale motors. The second goal is to uncover fundamentally new understandings of the physics governing the unique intrinsic coupling present in multiferroic materials at the nanoscale. This is accomplished through a combination of novel multi-scale modeling efforts and innovative multiferroic material development/testing processes. The third major goal is to develop an inclusive educational environment to guide the next generation of engineers through engineering research, project management, and entrepreneurial endeavors. The first two goals address a barrier that prevents further miniaturization of electronic devices. Eliminating this barrier has a significant impact on our society's reliance on conventional magnetic generation systems that are intrinsically energy inefficient in the small scale. TANMS premise is that electric field induced magnetic spin reorientation present in nanoscale multiferroics overcomes this efficiency problem and produces a wide range of miniaturization opportunities previously considered implausible. For the third goal, T ANMS focuses on transforming the engineering educational system by integrating students and teachers at all levels to promote diversity, participate in transitional research, and engender the notion that engineering and business careers are closely intertwined.Intellectual Merit: For the last several decades engineering has made significant progress toward miniaturizing electromagnetic devices, e.g. cell phones, computers, and wireless communication devices. However, the field is quickly reaching an impasse to further miniaturization mainly due to a reliance on inefficient electrical currents to produce and control magnetism in the small scale. TANMS seeks to establish a radically different approach relying on intrinsic magnetic property manipulation, i.e. magnetic spin reorientation, in a multiferroic. If properly designed, this magnetoelectric coupling is extremely large in the small scale where exchange coupling tightly binds adjacent atomic level spins creating single magnetic domains. The introduction of this new approach into applications for electromagnetic control provides a revolutionary advancement dramatically different from inefficient current based methods used in a wide range of electromagnetic devices including memory, antennas, and motors.Broader Impact: A major goal of the Center is to construct an environment which provides an educational pathway from cradle to career by relying on the unique I 0-year time horizon provided by an ERC. This is achieved through two synergistic programs, one during the academic school year and the other during the summer months, to introduce k-12 apd undergraduate students to engineering research and business opportunities throughout their educational career. Major consideration is also given to developing a heterogeneous workforce, representative of the national population, to overcome historical paradigms in engineering that limit diversity. T ANMS members strongly believe that students with diverse backgrounds have not been adequately educated regarding the benefits of being an engineer. While our society continues to glorify athletes and celebrities, the wealth of fulfilling opportunities available to engineers is not sufficiently articulated. TANMS strives to achieve this by establishing a new approach intertwining engineering research with business entrepreneurial endeavors.
NSF Nanosystems Engineering Research Center for Translational Applications of Nanoscale Multiferroic Systems(T ANMS),Greg P.卡曼,University of加州洛杉矶(Lead),University of加州Berkeley,Cornell University,加州州立大学Northridge,and ETH苏黎世Switzerland(Foreign)摘要Nanoscale Multiferroic Systems(TANMS)的转化应用有三个主要目标。第一个目标是将TANMS团队在纳米级多铁性材料上的独特发现,即用电场控制磁自旋结构,转化为三种应用:存储设备,小型化天线系统和纳米级电机。第二个目标是从根本上揭示新的理解的物理管理独特的内在耦合目前在多铁性材料在纳米尺度。这是通过新颖的多尺度建模工作和创新的多铁性材料开发/测试过程相结合来实现的。第三个主要目标是发展一个包容性的教育环境,通过工程研究,项目管理和创业努力指导下一代工程师。前两个目标解决了阻止电子设备进一步小型化的障碍。消除这一障碍对我们社会对传统磁发电系统的依赖有重大影响,传统磁发电系统在小规模上本质上是能源效率低下的。TANMS的前提是存在于纳米级多铁性材料中的电场诱导的磁自旋重取向克服了这种效率问题,并产生了广泛的小型化机会,以前认为这是不可能的。对于第三个目标,T ANMS的重点是通过整合各级学生和教师来改造工程教育系统,以促进多样性,参与过渡性研究,并产生工程和商业职业密切相关的概念。在过去的几十年里,工程学在电磁设备的电磁化方面取得了重大进展,例如手机,计算机,和无线通信设备。然而,该领域很快就陷入了进一步小型化的僵局,主要是由于依赖于低效的电流来产生和控制小规模的磁性。TANMS试图建立一种完全不同的方法,依赖于内在的磁性操纵,即磁自旋重取向,在多铁性。如果设计得当,这种磁电耦合在小尺度下是非常大的,其中交换耦合紧密地结合相邻的原子级自旋,从而产生单个磁畴。将这种新方法引入电磁控制应用提供了革命性的进步,与存储器、天线和电机等各种电磁设备中使用的低效电流方法截然不同。更广泛的影响:中心的一个主要目标是建立一个环境,提供从摇篮到职业生涯的教育途径,依靠独特的I 0-ERC提供的一年时间范围。这是通过两个协同计划,一个在学年和其他在夏季月份,介绍k-12的apd本科生工程研究和商业机会,在整个教育生涯中实现。主要考虑的是发展一个异质的劳动力,代表全国人口,克服工程的历史范式,限制多样性。T ANMS成员坚信,不同背景的学生没有得到足够的教育,成为一名工程师的好处。虽然我们的社会继续赞美运动员和名人,但工程师可以获得的丰富的实现机会并没有得到充分的阐述。TANMS努力通过建立一种新的方法来实现这一目标,将工程研究与商业创业努力交织在一起。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Greg Carman其他文献

Greg Carman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Greg Carman', 18)}}的其他基金

High Frequency Miniature PiezoPump For Ventricular Assist
用于心室辅助的高频微型压电泵
  • 批准号:
    1101523
  • 财政年份:
    2011
  • 资助金额:
    $ 1850万
  • 项目类别:
    Standard Grant
International:Evaluating the Magneto-Mechanical Response of Ferromagnetic Composites
国际:评估铁磁复合材料的磁机械响应
  • 批准号:
    0338407
  • 财政年份:
    2003
  • 资助金额:
    $ 1850万
  • 项目类别:
    Standard Grant
Hybrid Magnetostrictive Composite Material for Active Control
用于主动控制的混合磁致伸缩复合材料
  • 批准号:
    9815208
  • 财政年份:
    1999
  • 资助金额:
    $ 1850万
  • 项目类别:
    Standard Grant
National Science Foundation Research Equipment Grant Program: TiNi Sputtering System
国家科学基金会研究设备资助计划:TiNi 溅射系统
  • 批准号:
    9622283
  • 财政年份:
    1996
  • 资助金额:
    $ 1850万
  • 项目类别:
    Standard Grant
Strength Optimization of Material Systems Containing Cylindrically Shaped Coated Fibers
含有圆柱形涂层纤维的材料系统的强度优化
  • 批准号:
    9222515
  • 财政年份:
    1993
  • 资助金额:
    $ 1850万
  • 项目类别:
    Standard Grant

相似海外基金

Quantum Electro-Mechanical Engineering of Nanosystems
纳米系统量子机电工程
  • 批准号:
    RGPIN-2014-03996
  • 财政年份:
    2018
  • 资助金额:
    $ 1850万
  • 项目类别:
    Discovery Grants Program - Individual
Nanosystems Engineering Research Center for Directed Multiscale Assembly of Cellular Metamaterials with Nanoscale Precision: CELL-MET
纳米级精度细胞超材料定向多尺度组装纳米系统工程研究中心:CELL-MET
  • 批准号:
    1647837
  • 财政年份:
    2017
  • 资助金额:
    $ 1850万
  • 项目类别:
    Cooperative Agreement
Quantum Electro-Mechanical Engineering of Nanosystems
纳米系统量子机电工程
  • 批准号:
    RGPIN-2014-03996
  • 财政年份:
    2017
  • 资助金额:
    $ 1850万
  • 项目类别:
    Discovery Grants Program - Individual
Quantum Electro-Mechanical Engineering of Nanosystems
纳米系统量子机电工程
  • 批准号:
    RGPIN-2014-03996
  • 财政年份:
    2016
  • 资助金额:
    $ 1850万
  • 项目类别:
    Discovery Grants Program - Individual
NSF Nanosystems Engineering Research Center for Nantechnology Enabled Water Treatment Systems (NEWT)
NSF 纳米系统纳米技术水处理系统工程研究中心 (NEWT)
  • 批准号:
    1449500
  • 财政年份:
    2015
  • 资助金额:
    $ 1850万
  • 项目类别:
    Cooperative Agreement
Quantum Electro-Mechanical Engineering of Nanosystems
纳米系统量子机电工程
  • 批准号:
    RGPIN-2014-03996
  • 财政年份:
    2015
  • 资助金额:
    $ 1850万
  • 项目类别:
    Discovery Grants Program - Individual
Quantum Electro-Mechanical Engineering of Nanosystems
纳米系统量子机电工程
  • 批准号:
    RGPIN-2014-03996
  • 财政年份:
    2014
  • 资助金额:
    $ 1850万
  • 项目类别:
    Discovery Grants Program - Individual
Engineering DNA-nanosystems for tumor targeting
用于肿瘤靶向的工程 DNA 纳米系统
  • 批准号:
    279286
  • 财政年份:
    2013
  • 资助金额:
    $ 1850万
  • 项目类别:
    Operating Grants
Engineering DNA-nanosystems for tumor targeting
用于肿瘤靶向的工程 DNA 纳米系统
  • 批准号:
    273824
  • 财政年份:
    2012
  • 资助金额:
    $ 1850万
  • 项目类别:
    Operating Grants
NSF Nanosystems Engineering Research Center for Advanced Self-Powered Systems of Integrated Sensors and Technologies (ASSIST)
NSF 纳米系统先进自供电集成传感器和技术系统工程研究中心 (ASSIST)
  • 批准号:
    1160483
  • 财政年份:
    2012
  • 资助金额:
    $ 1850万
  • 项目类别:
    Cooperative Agreement
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了