Branching for representations of semisimple Lie groups and automorphic forms

半单李群和自同构表示的分支

基本信息

  • 批准号:
    1161173
  • 负责人:
  • 金额:
    $ 18.36万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-07-15 至 2016-06-30
  • 项目状态:
    已结题

项目摘要

This mathematics research project deals with the restriction of infinite dimensional unitary representations of a semisimple Lie group G to a semisimple subgroup H and applications to automorphic forms. The project also concerns the restriction of the underlying Harish Chandra-modules and their globalizations. The restrictions of unitary representations are not yet well understood and in particular understanding the restriction of the HarishChandra-modules is still in its infancy. So examples play a major role. Speh and her collaborators will also study the restriction of the HarishChandra-modules of the rank one orthogonal groups and to work out the restriction of complementary series representations, which are of particular analytic interest. These restriction problems have applications to automorphic forms and the cohomology of arithmetic groups, which Speh will also investigate; in particular she is interested in generalized modular symbols and period integrals defined by symmetric subgroups. This mathematics research project in the area of group representation theory deals in a fundamental way with the understanding of the symmetries of a space, such as the symmetries of an atom or the rotations of a sphere. Symmetries have important applications to several disciplines such as robotics and civil engineering. In robotics, the symmetries of the ``configuration space" are important and are limiting factors in the controllability of the arms of a robot. The stability of the impressive domes over some large buildings, such as sport stadiums, is due in part to the domes' symmetries. As part of this project, Speh will organize an interdisciplinary conference that will bring together senior and junior researchers from several disciplines.
本数学研究计画探讨半单李群G的无穷维酉表示对半单群H的限制及其在自守形式上的应用。该项目还涉及基本Harish Chandra模块及其全球化的限制。酉表示的限制还没有被很好地理解,特别是理解HarishChandra模的限制仍然处于起步阶段。因此,例子起着重要作用。斯佩和她的合作者还将研究限制的HarishChandra模块的秩一正交群,并制定出限制的互补系列表示,这是特别的分析兴趣。这些限制问题的应用自守形式和上同调的算术群,斯佩也将调查,特别是她感兴趣的是广义模块化符号和周期积分定义的对称子群。这个在群表示理论领域的数学研究项目涉及对空间对称性的基本理解,例如原子的对称性或球体的旋转。对称性在机器人和土木工程等多个学科中有重要的应用。 在机器人技术中,“位形空间”的对称性是重要的,并且是机器人手臂可控性的限制因素。在一些大型建筑物上,如体育场馆,令人印象深刻的圆顶的稳定性部分是由于圆顶的对称性。作为该项目的一部分,Speh将组织一次跨学科会议,汇集来自多个学科的高级和初级研究人员。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Birgit Speh其他文献

Pseudo-Eisenstein forms and cohomology¶of arithmetic groups. I
  • DOI:
    10.1007/s229-001-8030-5
  • 发表时间:
    2001-12-01
  • 期刊:
  • 影响因子:
    0.600
  • 作者:
    Jürgen Rohlfs;Birgit Speh
  • 通讯作者:
    Birgit Speh

Birgit Speh的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Birgit Speh', 18)}}的其他基金

Representations of Real Lie Groups, Symmetry Breaking, and Automorphic Forms
实李群、对称破缺和自守形式的表示
  • 批准号:
    1500644
  • 财政年份:
    2015
  • 资助金额:
    $ 18.36万
  • 项目类别:
    Continuing Grant
Representation Theory and Automorphic Forms
表示论和自守形式
  • 批准号:
    0901024
  • 财政年份:
    2009
  • 资助金额:
    $ 18.36万
  • 项目类别:
    Standard Grant
Representation Theory and Automorphic Forms
表示论和自守形式
  • 批准号:
    0300172
  • 财政年份:
    2003
  • 资助金额:
    $ 18.36万
  • 项目类别:
    Continuing Grant
Representation Theory and Automorphic Forms
表示论和自守形式
  • 批准号:
    0070561
  • 财政年份:
    2000
  • 资助金额:
    $ 18.36万
  • 项目类别:
    Continuing Grant
Representation Theory and Automorphic Forms
表示论和自守形式
  • 批准号:
    9706758
  • 财政年份:
    1997
  • 资助金额:
    $ 18.36万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Representation Theory and Automorphic Forms
数学科学:表示论和自守形式
  • 批准号:
    9401176
  • 财政年份:
    1994
  • 资助金额:
    $ 18.36万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Representation Theory and AutomorphicForms
数学科学:表示论和自守形式
  • 批准号:
    9104117
  • 财政年份:
    1991
  • 资助金额:
    $ 18.36万
  • 项目类别:
    Continuing Grant
Cohomology of Arithmetic Groups (Mathematics)
算术群的上同调(数学)
  • 批准号:
    8700431
  • 财政年份:
    1988
  • 资助金额:
    $ 18.36万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Automorphic Representations of Semisimple Lie Groups
数学科学:半单李群的自守表示
  • 批准号:
    8801248
  • 财政年份:
    1988
  • 资助金额:
    $ 18.36万
  • 项目类别:
    Continuing grant
Cohomology of Arithmetic Groups (Mathematics)
算术群的上同调(数学)
  • 批准号:
    8896299
  • 财政年份:
    1988
  • 资助金额:
    $ 18.36万
  • 项目类别:
    Standard Grant

相似海外基金

Topology of Hessenberg varieties and representations of symmetric groups
Hessenberg簇的拓扑和对称群的表示
  • 批准号:
    15K17544
  • 财政年份:
    2015
  • 资助金额:
    $ 18.36万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Structure and representations of semisimple Lie algebras and semidirect product Lie algebras
半单李代数和半直积李代数的结构和表示
  • 批准号:
    RGPIN-2015-04770
  • 财政年份:
    2015
  • 资助金额:
    $ 18.36万
  • 项目类别:
    Discovery Grants Program - Individual
Semisimple Hopf algebras: Their representations and actions
半简单 Hopf 代数:它们的表示和作用
  • 批准号:
    0701291
  • 财政年份:
    2007
  • 资助金额:
    $ 18.36万
  • 项目类别:
    Standard Grant
Geometry and dynamics of representations into semisimple Lie Groups
半单李群表示的几何和动力学
  • 批准号:
    0803216
  • 财政年份:
    2007
  • 资助金额:
    $ 18.36万
  • 项目类别:
    Standard Grant
Geometry and dynamics of representations into semisimple Lie Groups
半单李群表示的几何和动力学
  • 批准号:
    0604665
  • 财政年份:
    2006
  • 资助金额:
    $ 18.36万
  • 项目类别:
    Standard Grant
The study of the representation theoretical aspect of generalized flag varieties
广义旗品种代表性理论研究
  • 批准号:
    18540162
  • 财政年份:
    2006
  • 资助金额:
    $ 18.36万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Actions of semisimple groups and Weyl groups and research on representations
半单群和Weyl群的作用及表示研究
  • 批准号:
    17540013
  • 财政年份:
    2005
  • 资助金额:
    $ 18.36万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research on Orbits of Semisimple Lie Algebras and Representations
半简单李代数及其表示的轨道研究
  • 批准号:
    15540013
  • 财政年份:
    2003
  • 资助金额:
    $ 18.36万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Isotropy representations associated with Harish-Chandra modules and nilpotent orbit theory
与 Harish-Chandra 模和幂零轨道理论相关的各向同性表示
  • 批准号:
    14340001
  • 财政年份:
    2002
  • 资助金额:
    $ 18.36万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Theory of branching laws of unitary representations and non-commutative harmonic analysis by transformation groups of geometric structures
酉表示分支律理论和几何结构变换群的非交换调和分析
  • 批准号:
    14340043
  • 财政年份:
    2002
  • 资助金额:
    $ 18.36万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了