Theory of branching laws of unitary representations and non-commutative harmonic analysis by transformation groups of geometric structures
酉表示分支律理论和几何结构变换群的非交换调和分析
基本信息
- 批准号:14340043
- 负责人:
- 金额:$ 5.82万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (B)
- 财政年份:2002
- 资助国家:日本
- 起止时间:2002 至 2005
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The branching law is the irreducible decomposition of a group representation when restricted to a subgroup (e.g. decomposition of tensor products, breaking symmetry in physics,...). Analysis of branching laws is one of principal subjects in representation theory. Nevertheless, very little has been studied on branching laws of unitary representations of reductive groups, except for some special cases until mid 1990s, partly because of analytic difficulties arising from infinite dimensions.Our main results during this period are :1.To publish the basic theory of branching laws of unitary representations with emphasis on discrete decomposable cases and its applications to representation theory itself, non-commutative harmonic analysis, and topology of locally symmetric spaces.2.To construct the canonical representations of the conformal groups of pseudo-Riemannian manifolds by means of the Yamabe operator. In particular, we use this machinery for the study of minimal representations of in … More definite orthogonal groups. Besides, we find (conformal) conservation laws of solutions to certain ultra-hyperbolic equations. Branching laws when restricted to isometry groups play an important role in our analysis (joint with B.Orsted).3.To make a unified approach to multiplicity-free theorems of the biholomorphic transformation groups of complex manifolds by means of orbit-preserving anthi-holomorphic maps. In particular, we use this machinery for the study of multiplicity-free tensor product representations of general linear groups.4.In the late 1980, I initiated the study of discontinuous groups for pseudo-Riemannian homogeneous spaces. In the memorial volume of A.Borel, I published a survey article on this area, and also gave new criteria for the existence of co-compact discontinuous groups for semisimple symmetric spaces and their tangential symmetric spaces (joint with T.Yoshino). Besides, the deformation spaces of discontinuous groups are investigated.5.On these topics, I gave one-hour invited lectures in various international conferences, including ICM 2002, Pan-African Congress 2004 (plenary address), and Asian Congress 2005. Less
分支律是群表示在受限于子群时的不可约分解(例如张量积的分解,物理学中的对称破缺,.)。分支律的分析是表示论的主要研究课题之一。然而,直到20世纪90年代中期,除了一些特殊情况外,关于约化群酉表示的分支律的研究很少,部分原因是无穷维引起的分析困难。我们在这一时期的主要结果是:1.发表酉表示的分支律的基本理论,重点是离散可分解的情况及其在表示论本身、非交换调和分析中的应用,2.利用Yamabe算子构造伪黎曼流形共形群的正则表示。特别是,我们使用这种机制的最小表示的研究中, ...更多信息 有限正交群此外,我们还找到了某些超双曲型方程解的(共形)守恒律。在我们的分析中,分支律在等距群中起着重要的作用(与B.Orsted联合)。3.利用保轨的全纯映射,统一地研究复流形的双全纯变换群的无重数定理。特别地,我们使用这个机器来研究一般线性群的无重性张量积表示。4.在1980年末,我开始了伪黎曼齐性空间的不连续群的研究。在A.Borel的纪念卷中,我发表了一篇关于这一领域的综述文章,并给出了半单对称空间及其切对称空间的余紧不连续群存在的新判据(与T.Yoshino联合)。5.关于这些问题,我在各种国际会议上做了一个小时的特邀演讲,包括ICM 2002,泛非大会2004(全体会议发言),和亚洲大会2005。少
项目成果
期刊论文数量(81)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
T.Kobayashi, S.Nasrin: "Multiplicity one theorem in the orbit method"Amer.Math.Soc.Transl.Series 2, Amer.Math.Soc. A Volume In memory of Professor F.Karpelevic. 210. 161-169 (2003)
T.Kobayashi、S.Nasrin:“轨道方法中的多重性一定理”Amer.Math.Soc.Transl.Series 2,Amer.Math.Soc。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Analysis on minimal representations of O(p,q), I. Realization and conformal geometry
O(p,q)的最小表示分析,I.实现与共形几何
- DOI:
- 发表时间:2003
- 期刊:
- 影响因子:0
- 作者:Toshiyuki Kobayashi;Bent Orsted
- 通讯作者:Bent Orsted
Lie Theory : Unitary Representations and Compactifications of Symmetric Spaces, Progress in Mathematics, vol. 229, ISBN 0-8176-3526-2(Restrictions of unitary representations of real reductive groups. In J.-P. Anker and B. Orsted, editors)
李理论:对称空间的酉表示和紧化,数学进展,卷。
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:小林俊行;大島利雄;F.Klopp;Toshiyuki Kobayashi
- 通讯作者:Toshiyuki Kobayashi
T.Kobayashi: "O(p,q)の極小ユニタリ表現のシュレディンガーモデル"数理解析研究所講究録. 1342. 107-116 (2003)
T. Kobayashi:“O(p,q) 的最小酉表示的薛定谔模型”数学科学研究所 Kokyuroku。1342. 107-116 (2003)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KOBAYASHI Toshiyuki其他文献
KOBAYASHI Toshiyuki的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KOBAYASHI Toshiyuki', 18)}}的其他基金
Analysis of minimal representations and branching laws of infinite-dimensional representations
最小表示和无限维表示的分支规律分析
- 批准号:
22340026 - 财政年份:2010
- 资助金额:
$ 5.82万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Elucidation of signal transduction systems which are regulated by BHD tumor suppressor protein
阐明 BHD 肿瘤抑制蛋白调节的信号转导系统
- 批准号:
20590316 - 财政年份:2008
- 资助金额:
$ 5.82万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Transformation groups for geometric structures, global geometric analysis, and theory of branching laws of infinite dimensional representations
几何结构的变换群、全局几何分析和无限维表示的分支定律理论
- 批准号:
18340037 - 财政年份:2006
- 资助金额:
$ 5.82万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Elucidation of tumor suppressor function of Birt-Hogg-Dube syndrome gene(BHD)
Birt-Hogg-Dube综合征基因(BHD)抑癌功能的阐明
- 批准号:
18590380 - 财政年份:2006
- 资助金额:
$ 5.82万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Abnormality of sugar/amino acid transport and ATP sensor in renal carcinogenesis
糖/氨基酸转运和ATP传感器异常在肾癌发生中的作用
- 批准号:
16590256 - 财政年份:2004
- 资助金额:
$ 5.82万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Functional analysis of tuberin by using animal models of tumor suppressor Tsc2-mutant.
利用抑癌基因 Tsc2 突变体动物模型对马铃薯蛋白进行功能分析。
- 批准号:
14580804 - 财政年份:2002
- 资助金额:
$ 5.82万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Functional analysis of hamartin by use of Tscl knockout mice.
使用 Tscl 敲除小鼠进行 Hamartin 功能分析。
- 批准号:
12680819 - 财政年份:2000
- 资助金额:
$ 5.82万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Theory of branching laws of unitary representations of reductive Lie groups and geometric realization of representations
还原李群酉表示的分支定律理论及表示的几何实现
- 批准号:
11440018 - 财政年份:1999
- 资助金额:
$ 5.82万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Functional analysis of Tsc2 gene product by conditional gene targeting.
通过条件基因打靶对 Tsc2 基因产物进行功能分析。
- 批准号:
10680783 - 财政年份:1998
- 资助金额:
$ 5.82万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Generation of the wild-type Tsc2 transgenic Eker rat and its effect on renal carcinogenesis.
野生型 Tsc2 转基因 Eker 大鼠的产生及其对肾癌发生的影响。
- 批准号:
08680915 - 财政年份:1996
- 资助金额:
$ 5.82万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Unitary representations of reductive p-adic groups: an algorithm
还原 p 进群的酉表示:一种算法
- 批准号:
EP/V046713/1 - 财政年份:2021
- 资助金额:
$ 5.82万 - 项目类别:
Research Grant
Unitary representations of groups and the implications for wavelet analysis.
群的酉表示及其对小波分析的影响。
- 批准号:
3176-2013 - 财政年份:2017
- 资助金额:
$ 5.82万 - 项目类别:
Discovery Grants Program - Individual
Unitary representations of groups and the implications for wavelet analysis.
群的酉表示及其对小波分析的影响。
- 批准号:
3176-2013 - 财政年份:2016
- 资助金额:
$ 5.82万 - 项目类别:
Discovery Grants Program - Individual
Unitary representations of groups and the implications for wavelet analysis.
群的酉表示及其对小波分析的影响。
- 批准号:
3176-2013 - 财政年份:2015
- 资助金额:
$ 5.82万 - 项目类别:
Discovery Grants Program - Individual
Unitary Representations and Generalized Harish-Chandra Modules
酉表示和广义 Harish-Chandra 模
- 批准号:
341504-2013 - 财政年份:2015
- 资助金额:
$ 5.82万 - 项目类别:
Discovery Grants Program - Individual
Unitary representations of affine Hecke algebras and reductive p-adic groups
仿射 Hecke 代数和还原 p-adic 群的酉表示
- 批准号:
1620329 - 财政年份:2015
- 资助金额:
$ 5.82万 - 项目类别:
Standard Grant
Unitary Representations and Generalized Harish-Chandra Modules
酉表示和广义 Harish-Chandra 模
- 批准号:
341504-2013 - 财政年份:2014
- 资助金额:
$ 5.82万 - 项目类别:
Discovery Grants Program - Individual
Unitary representations of groups and the implications for wavelet analysis.
群的酉表示及其对小波分析的影响。
- 批准号:
3176-2013 - 财政年份:2014
- 资助金额:
$ 5.82万 - 项目类别:
Discovery Grants Program - Individual
Quantization of singular nilpotent orbits of reductive Lie groups and realization of unitary representations
还原李群奇异幂零轨道的量子化和酉表示的实现
- 批准号:
25400103 - 财政年份:2013
- 资助金额:
$ 5.82万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Unitary Representations and Generalized Harish-Chandra Modules
酉表示和广义 Harish-Chandra 模
- 批准号:
341504-2013 - 财政年份:2013
- 资助金额:
$ 5.82万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




