III: Medium: Collaborative Research: Toward Robust and Scalable Discovering of Significant Associations in Massive Genetic Data

III:媒介:合作研究:在海量遗传数据中稳健且可扩展地发现显着关联

基本信息

  • 批准号:
    1162369
  • 负责人:
  • 金额:
    $ 49.96万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-10-01 至 2012-12-31
  • 项目状态:
    已结题

项目摘要

A fundamental challenge in life sciences is the characterization of genetic factors that underlie phenotypic differences. Thanks to the advanced sequencing technologies, an enormous amount of genetic variants have been identified and cataloged. Such data hold great potential to understand how genes affect phenotypes and contribute to the susceptibility to environmental stimulus. However, the existing computational methods for analyzing and interpreting the high-throughput genetic data are still in their infancy. The objective of this project is to systematically investigate the computational and statistical principles in modeling and discovering genetic basis of complex phenotypes. The proposed research provides answers to the following fundamental questions in genetic association study: (1) How to effectively and efficiently assess statistical significance of the findings? (2) How to account for the relatedness between samples in genetic association study? (3) How to accurately capture possible interactions between multiple genetic factors and their joint contribution to phenotypic variation? In particular, the team will develop a multi-layer indexing structure for robust and scalable multiple testing correction, a general phylogenetic tree based framework to account for local population structure, and an ensemble learning approach for studying joint effect of multiple genetic factors.The research provides a computational framework for large scale genotype-phenotype association study. The outcome includes novel methods for addressing sample relatedness, capturing confounding factors, and controlling multiple testing errors which are widely applicable for many common data mining tasks including frequent pattern mining, multitask learning, and ensemble learning among others. Collectively, the theoretic framework and algorithms will provide the research community much better tools to dissect complex relationships between genotypes and phenotypes, and gain deeper understanding of the roles of environmental stimuli.The proposed research directly involves applications in large scale genome-wide association study. Additional applications exist for biologists in their study of gene-gene interactions, metabolic pathways and protein-protein interaction networks. Beyond the applications proposed here, the algorithms can find wide applications in other areas of biology as well as other scientific disciplines. The methods will be evaluated thoroughly by both simulation and real data collected from yeast, mouse, and human. Early versions of the applications will be made available to the biological community through a web-based server to evaluate efficacy of the methods and to apply them to a broader set of problems. The research findings and methods will be integrated into graduate and undergraduate instruction. The team already offer classes in computational biology and data-mining where the proposed tools will aid students in comprehending abstract concepts and data relations. They will also continue their commitment to supporting multidisciplinary educational experiences, and service to the research community, as well and proving research opportunities for undergraduate students.
生命科学的一个基本挑战是表征表型差异背后的遗传因素。由于先进的测序技术,大量的遗传变异已经被识别和编目。这些数据对于理解基因如何影响表型以及如何影响对环境刺激的敏感性具有巨大的潜力。然而,现有的用于分析和解释高通量遗传数据的计算方法仍处于起步阶段。本项目的目标是系统地研究复杂表型的建模和发现遗传基础的计算和统计原理。本研究回答了遗传关联研究中的以下基本问题:(1)如何有效地评估研究结果的统计学意义?(2)遗传关联研究中样本间的相关性如何解释?(3)如何准确捕捉多个遗传因子之间可能的相互作用及其对表型变异的共同贡献?特别是,该团队将开发一个多层索引结构,用于强大和可扩展的多重检验校正,一个通用的基于系统发育树的框架来解释当地种群结构,以及一个集成学习方法来研究多个遗传因素的联合作用。该研究为大规模基因型-表型关联研究提供了一个计算框架。结果包括解决样本相关性,捕获混杂因素和控制多个测试错误的新方法,这些方法广泛适用于许多常见的数据挖掘任务,包括频繁模式挖掘,多任务学习和集成学习等。这些理论框架和算法将为研究群体提供更好的工具来剖析基因型和表型之间的复杂关系,并加深对环境刺激作用的理解,直接应用于大规模全基因组关联研究。生物学家在基因-基因相互作用、代谢途径和蛋白质-蛋白质相互作用网络的研究中还有其他应用。除了这里提出的应用之外,这些算法还可以在生物学的其他领域以及其他科学学科中找到广泛的应用。这些方法将通过模拟和从酵母、小鼠和人类收集的真实的数据进行彻底评估。这些应用程序的早期版本将通过一个网络服务器提供给生物界,以评估这些方法的效力,并将其应用于更广泛的问题。 研究结果和方法将被整合到研究生和本科教学。该团队已经提供计算生物学和数据挖掘课程,其中提出的工具将帮助学生理解抽象概念和数据关系。他们还将继续致力于支持多学科的教育经验,并为研究界服务,以及为本科生提供研究机会。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Wei Wang其他文献

Protective effects of jca 3000 + CP against ultraviolet-induced damage in HaCaT and MEF cells
jca 3000 CP 对 HaCaT 和 MEF 细胞紫外线损伤的保护作用
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shujuan Ren;Jing Li;Wei Wang;H. Guan
  • 通讯作者:
    H. Guan
Oxidative DNA Cleavage by Zn(X-BDPA)(NO 3 ) 2 Complexes (X=F, H, and Me): Effect of Different Ligand Substituents
Zn(X-BDPA)(NO 3 ) 2 复合物(X=F、H 和 Me)对 DNA 的氧化切割:不同配体取代基的影响
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hee;Jinju Kwon;Wei Wang;H. Lee;Cheal Kim;Youngmee Kim;T. Cho
  • 通讯作者:
    T. Cho
Pivotal and Ribbon Entwining Datums
枢轴和带状缠绕基准
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xiaohui Zhang;Wei Wang;Xiaofan Zhao
  • 通讯作者:
    Xiaofan Zhao
EFFECTS OF PULLING RATE ON MICROSTRUCTURE EVOLUTION OF DIRECTIONALLY SOLIDIFIED Fe--4.2Ni ALLOY IN DIFFUSION REGIME: EFFECTS OF PULLING RATE ON MICROSTRUCTURE EVOLUTION OF DIRECTIONALLY SOLIDIFIED Fe--4.2Ni ALLOY IN DIFFUSION REGIME
拉伸速率对扩散区定向凝固 Fe--4.2Ni 合金组织演化的影响: 拉伸速率对扩散区定向凝固 Fe--4.2Ni 合金组织演化的影响
  • DOI:
    10.3724/sp.j.1037.2010.00311
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Z. Feng;Jun Shen;Wei Wang;Z. Min;H. Fu
  • 通讯作者:
    H. Fu
A four week randomised control trial of adjunctive medroxyprogesterone and tamoxifen in women with mania
一项为期 4 周的随机对照试验,对躁狂症女性患者辅助使用甲羟孕酮和他莫昔芬
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    J. Kulkarni;M. Berk;Wei Wang;L. Mu;E. Scarr;T. V. Rheenen;Roisin N Worsley;C. Gurvich;Emorfia Gavrilidis;A. D. Castella;P. Fitzgerald;S. Davis
  • 通讯作者:
    S. Davis

Wei Wang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Wei Wang', 18)}}的其他基金

CAREER: Harnessing the Interplay of Morphology, Viscoelasticity, and Surface-Active Agents to Modulate Soft Wetting
职业:利用形态、粘弹性和表面活性剂的相互作用来调节软润湿
  • 批准号:
    2336504
  • 财政年份:
    2024
  • 资助金额:
    $ 49.96万
  • 项目类别:
    Continuing Grant
An Educational Tool for Teaching and Learning Concurrent Computer Programming Techniques
用于教授和学习并行计算机编程技术的教育工具
  • 批准号:
    2215359
  • 财政年份:
    2022
  • 资助金额:
    $ 49.96万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Exploiting Performance Correlations for Accurate and Low-cost Performance Testing for Serverless Computing
协作研究:SHF:小型:利用性能相关性对无服务器计算进行准确且低成本的性能测试
  • 批准号:
    2155096
  • 财政年份:
    2022
  • 资助金额:
    $ 49.96万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Enhancing Security and Privacy of Augmented Reality Mobile Applications through Software Behavior Analysis
合作研究:EAGER:通过软件行为分析增强增强现实移动应用程序的安全性和隐私性
  • 批准号:
    2221843
  • 财政年份:
    2022
  • 资助金额:
    $ 49.96万
  • 项目类别:
    Standard Grant
PIPP Phase I: An End-to-End Pandemic Early Warning System by Harnessing Open-source Intelligence
PIPP 第一阶段:利用开源情报的端到端流行病预警系统
  • 批准号:
    2200274
  • 财政年份:
    2022
  • 资助金额:
    $ 49.96万
  • 项目类别:
    Standard Grant
Enhancing Programming and Machine Learning Education for Students with Visual Impairments through the Use of Compilers, AI and Cloud Technologies
通过使用编译器、人工智能和云技术加强对视力障碍学生的编程和机器学习教育
  • 批准号:
    2202632
  • 财政年份:
    2022
  • 资助金额:
    $ 49.96万
  • 项目类别:
    Standard Grant
Collaborative Research: A Bioinspired Approach towards Sustainable Membranes for Resilient Brine Treatment
合作研究:用于弹性盐水处理的可持续膜的仿生方法
  • 批准号:
    2226501
  • 财政年份:
    2022
  • 资助金额:
    $ 49.96万
  • 项目类别:
    Standard Grant
III: Medium: Collaborative Research: Collaborative Machine-Learning-Centric Data Analytics at Scale
III:媒介:协作研究:以机器学习为中心的大规模协作数据分析
  • 批准号:
    2106859
  • 财政年份:
    2021
  • 资助金额:
    $ 49.96万
  • 项目类别:
    Continuing Grant
RAPID: Dynamic Graph Neural Networks for Modeling and Monitoring COVID-19 Pandemic
RAPID:用于建模和监测 COVID-19 大流行的动态图神经网络
  • 批准号:
    2031187
  • 财政年份:
    2020
  • 资助金额:
    $ 49.96万
  • 项目类别:
    Standard Grant
Collaborative Research; RUI: Non-Orthogonal Multiple Access Pricing for Wireless Multimedia Communications
合作研究;
  • 批准号:
    2010284
  • 财政年份:
    2020
  • 资助金额:
    $ 49.96万
  • 项目类别:
    Standard Grant

相似海外基金

III : Medium: Collaborative Research: From Open Data to Open Data Curation
III:媒介:协作研究:从开放数据到开放数据管理
  • 批准号:
    2420691
  • 财政年份:
    2024
  • 资助金额:
    $ 49.96万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Medium: Designing AI Systems with Steerable Long-Term Dynamics
合作研究:III:中:设计具有可操纵长期动态的人工智能系统
  • 批准号:
    2312865
  • 财政年份:
    2023
  • 资助金额:
    $ 49.96万
  • 项目类别:
    Standard Grant
Collaborative Research: III: MEDIUM: Responsible Design and Validation of Algorithmic Rankers
合作研究:III:媒介:算法排序器的负责任设计和验证
  • 批准号:
    2312932
  • 财政年份:
    2023
  • 资助金额:
    $ 49.96万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Medium: Algorithms for scalable inference and phylodynamic analysis of tumor haplotypes using low-coverage single cell sequencing data
合作研究:III:中:使用低覆盖率单细胞测序数据对肿瘤单倍型进行可扩展推理和系统动力学分析的算法
  • 批准号:
    2415562
  • 财政年份:
    2023
  • 资助金额:
    $ 49.96万
  • 项目类别:
    Standard Grant
III: Medium: Collaborative Research: Integrating Large-Scale Machine Learning and Edge Computing for Collaborative Autonomous Vehicles
III:媒介:协作研究:集成大规模机器学习和边缘计算以实现协作自动驾驶汽车
  • 批准号:
    2348169
  • 财政年份:
    2023
  • 资助金额:
    $ 49.96万
  • 项目类别:
    Continuing Grant
Collaborative Research: III: Medium: VirtualLab: Integrating Deep Graph Learning and Causal Inference for Multi-Agent Dynamical Systems
协作研究:III:媒介:VirtualLab:集成多智能体动态系统的深度图学习和因果推理
  • 批准号:
    2312501
  • 财政年份:
    2023
  • 资助金额:
    $ 49.96万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Medium: Knowledge discovery from highly heterogeneous, sparse and private data in biomedical informatics
合作研究:III:中:生物医学信息学中高度异构、稀疏和私有数据的知识发现
  • 批准号:
    2312862
  • 财政年份:
    2023
  • 资助金额:
    $ 49.96万
  • 项目类别:
    Standard Grant
Collaborative Research: III: MEDIUM: Responsible Design and Validation of Algorithmic Rankers
合作研究:III:媒介:算法排序器的负责任设计和验证
  • 批准号:
    2312930
  • 财政年份:
    2023
  • 资助金额:
    $ 49.96万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Medium: New Machine Learning Empowered Nanoinformatics System for Advancing Nanomaterial Design
合作研究:III:媒介:新的机器学习赋能纳米信息学系统,促进纳米材料设计
  • 批准号:
    2347592
  • 财政年份:
    2023
  • 资助金额:
    $ 49.96万
  • 项目类别:
    Standard Grant
Collaborative Research: IIS: III: MEDIUM: Learning Protein-ish: Foundational Insight on Protein Language Models for Better Understanding, Democratized Access, and Discovery
协作研究:IIS:III:中等:学习蛋白质:对蛋白质语言模型的基础洞察,以更好地理解、民主化访问和发现
  • 批准号:
    2310113
  • 财政年份:
    2023
  • 资助金额:
    $ 49.96万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了