Enhancing Programming and Machine Learning Education for Students with Visual Impairments through the Use of Compilers, AI and Cloud Technologies

通过使用编译器、人工智能和云技术加强对视力障碍学生的编程和机器学习教育

基本信息

  • 批准号:
    2202632
  • 负责人:
  • 金额:
    $ 77.09万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-06-15 至 2025-05-31
  • 项目状态:
    未结题

项目摘要

Attractive high-paying and highly flexible Computer Science careers should be more readily accessible for people with blindness or visual impairments (BVI). Unfortunately, teaching the required computer programming and data science skills to students with BVI is extremely challenging due to two major difficulties. The first difficulty comes from the limited capability of current screen readers to properly read computer codes that are a mix of English letters, digits, and punctuation marks. The specialized set of keystrokes used in programming is also not conveniently read by screen readers (e.g., spaces and tabs). The second difficulty comes from time-consuming and frustrating code navigation, whereby students with BVI must repeatedly use screen readers to read every line to locate the desired line for editing. Partnering with San Antonio Lighthouse for the Blind and Vision Impaired, the project will develop new accessibility tools, including a program syntax- and semantics-aware screen reader and a voice-command-based code navigation framework to address the above two difficulties. These accessibility tools will be offered through cloud-based web interfaces to provide nationwide access to students and educators. The success of this project will improve the effectiveness of teaching computer programming and data science to students with BVI, which in turn will increase accessibility for more individuals with BVI to participate in Computing Science with high-paying career opportunities and could lead to a more-diverse Computer Science workforce. These accessibility tools will use compilers, Artificial Intelligence (AI), and cloud technologies to read computer code statements based on their meanings, rather than only reading one character at a time. The screen reader will articulate the necessary information that beginning coders need and help them more easily understand the lexicon and semantics used in computer programming and data science. The voice-command-based code navigation will employ speech recognition and natural language processing so that students will be able to use their voice to easily locate a specific statement (e.g., a variable declaration) within their code. These accessibility tools will be integrated into Jupyter notebook and offered through the cloud which will give nationwide access to students and educators. This cloud-based solution will also allow sophisticated AI models to be employed without requiring the students to have powerful and expensive computers to run these accessibility tools. The project will conduct a systematic evaluation of these accessibility tools using single-case research design to deepen the understanding of how technologies, including compilers, AI, and cloud computing, can be applied to teaching Computer Science skills to students with BVI. The evaluation will also provide feedback on the effectiveness of different speech styles and provide additional feedback for future improvements of these accessibility tools.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
对于失明或视觉障碍(BVI)的人来说,有吸引力的高薪和高度灵活的计算机科学职业应该更容易获得。不幸的是,由于两个主要困难,向英属维尔京群岛的学生传授所需的计算机编程和数据科学技能极具挑战性。第一个困难来自于当前屏幕阅读器正确读取由英文字母、数字和标点符号组成的计算机代码的能力有限。编程中使用的专用击键集也不便于屏幕阅读器(例如,空格和制表符)读取。第二个困难来自耗时且令人沮丧的代码导航,BVI的学生必须重复使用屏幕阅读器来阅读每一行,以定位所需的行进行编辑。该项目将与圣安东尼奥盲人和视障人士灯塔合作,开发新的无障碍工具,包括程序语法和语义感知的屏幕阅读器和基于语音命令的代码导航框架,以解决上述两个困难。这些无障碍工具将通过基于云的网络界面提供,以便在全国范围内向学生和教育工作者提供访问。该项目的成功将提高向英属维尔京群岛学生教授计算机编程和数据科学的有效性,这反过来将增加更多英属维尔京群岛学生参与计算科学的机会,获得高薪职业机会,并可能导致计算机科学劳动力更加多样化。这些辅助工具将使用编译器、人工智能(AI)和云技术根据含义读取计算机代码语句,而不是一次只读取一个字符。屏幕阅读器将阐明初级程序员需要的必要信息,并帮助他们更容易地理解计算机编程和数据科学中使用的词汇和语义。基于语音命令的代码导航将使用语音识别和自然语言处理,以便学生能够使用他们的语音在他们的代码中轻松定位特定语句(例如,变量声明)。这些辅助工具将被集成到Jupyter笔记本电脑中,并通过云提供,这将使全国范围内的学生和教育工作者都可以访问。这个基于云的解决方案还将允许使用复杂的人工智能模型,而不需要学生拥有强大而昂贵的计算机来运行这些辅助工具。该项目将使用单案例研究设计对这些可访问性工具进行系统评估,以加深对如何将包括编译器、人工智能和云计算在内的技术应用于向BVI学生教授计算机科学技能的理解。评估还将就不同演讲风格的有效性提供反馈,并为这些无障碍工具的未来改进提供额外反馈。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Virtual Summer Camp for High School Students with Disabilities - An Experience Report
残疾高中生虚拟夏令营 - 经验报告
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Wei Wang其他文献

A High-Performance Isolated High-Frequency Converter With Optimal Switch Impedance
具有最佳开关阻抗的高性能隔离式高频转换器
Cambrian magmatic flare-up, central Tibet: Magma mixing in proto-Tethyan arc along north Gondwanan margin
西藏中部寒武纪岩浆爆发:沿冈瓦南边缘北缘的原特提斯弧中岩浆混合
  • DOI:
    10.1130/b35859.1
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    4.9
  • 作者:
    Peiyuan Hu;Qingguo Zhai;Peter A. Cawood;Guochun Zhao;Jun Wang;Yue Tang;Zhicai Zhu;Wei Wang;Hao Wu
  • 通讯作者:
    Hao Wu
Spatial resolution comparison of AC-SECM with SECM and their characterization of self-healing performance of hexamethylene diisocyanate trimer microcapsule coatings
AC-SECM与SECM的空间分辨率比较及其对六亚甲基二异氰酸酯三聚体微胶囊涂层自修复性能的表征
  • DOI:
    10.1039/c5ta00529a
  • 发表时间:
    2015-02
  • 期刊:
  • 影响因子:
    11.9
  • 作者:
    Wei Wang;Likun Xu;Huyuan Sun;Xiangbo Li;Shouhuan Zhao;Weining Zhang
  • 通讯作者:
    Weining Zhang
Application of machine learning algorithms in lane-changing model for intelligent vehicles exiting to off-ramp
机器学习算法在智能车辆驶出匝道换道模型中的应用
  • DOI:
    10.1080/23249935.2020.1746861
  • 发表时间:
    2020-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Changyin Dong;Hao Wang;Ye Li;Xiaomeng Shi;Daiheng Ni;Wei Wang
  • 通讯作者:
    Wei Wang
Financial development and wage income: Evidence from the global football market
金融发展与工资收入:来自全球足球市场的证据
  • DOI:
    10.1016/j.jbankfin.2023.106813
  • 发表时间:
    2023-02
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Wei Wang;Haoxi Yang;Xi Wang
  • 通讯作者:
    Xi Wang

Wei Wang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Wei Wang', 18)}}的其他基金

CAREER: Harnessing the Interplay of Morphology, Viscoelasticity, and Surface-Active Agents to Modulate Soft Wetting
职业:利用形态、粘弹性和表面活性剂的相互作用来调节软润湿
  • 批准号:
    2336504
  • 财政年份:
    2024
  • 资助金额:
    $ 77.09万
  • 项目类别:
    Continuing Grant
An Educational Tool for Teaching and Learning Concurrent Computer Programming Techniques
用于教授和学习并行计算机编程技术的教育工具
  • 批准号:
    2215359
  • 财政年份:
    2022
  • 资助金额:
    $ 77.09万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Exploiting Performance Correlations for Accurate and Low-cost Performance Testing for Serverless Computing
协作研究:SHF:小型:利用性能相关性对无服务器计算进行准确且低成本的性能测试
  • 批准号:
    2155096
  • 财政年份:
    2022
  • 资助金额:
    $ 77.09万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Enhancing Security and Privacy of Augmented Reality Mobile Applications through Software Behavior Analysis
合作研究:EAGER:通过软件行为分析增强增强现实移动应用程序的安全性和隐私性
  • 批准号:
    2221843
  • 财政年份:
    2022
  • 资助金额:
    $ 77.09万
  • 项目类别:
    Standard Grant
PIPP Phase I: An End-to-End Pandemic Early Warning System by Harnessing Open-source Intelligence
PIPP 第一阶段:利用开源情报的端到端流行病预警系统
  • 批准号:
    2200274
  • 财政年份:
    2022
  • 资助金额:
    $ 77.09万
  • 项目类别:
    Standard Grant
Collaborative Research: A Bioinspired Approach towards Sustainable Membranes for Resilient Brine Treatment
合作研究:用于弹性盐水处理的可持续膜的仿生方法
  • 批准号:
    2226501
  • 财政年份:
    2022
  • 资助金额:
    $ 77.09万
  • 项目类别:
    Standard Grant
III: Medium: Collaborative Research: Collaborative Machine-Learning-Centric Data Analytics at Scale
III:媒介:协作研究:以机器学习为中心的大规模协作数据分析
  • 批准号:
    2106859
  • 财政年份:
    2021
  • 资助金额:
    $ 77.09万
  • 项目类别:
    Continuing Grant
RAPID: Dynamic Graph Neural Networks for Modeling and Monitoring COVID-19 Pandemic
RAPID:用于建模和监测 COVID-19 大流行的动态图神经网络
  • 批准号:
    2031187
  • 财政年份:
    2020
  • 资助金额:
    $ 77.09万
  • 项目类别:
    Standard Grant
Collaborative Research; RUI: Non-Orthogonal Multiple Access Pricing for Wireless Multimedia Communications
合作研究;
  • 批准号:
    2010284
  • 财政年份:
    2020
  • 资助金额:
    $ 77.09万
  • 项目类别:
    Standard Grant
SusChEM: Direct functionalization of aldehydes enabled by aminocatalysis
SusChEM:通过氨基催化实现醛的直接官能化
  • 批准号:
    1903983
  • 财政年份:
    2019
  • 资助金额:
    $ 77.09万
  • 项目类别:
    Continuing Grant

相似海外基金

CRII: CIF: A Machine Learning-based Computational Framework for Large-Scale Stochastic Programming
CRII:CIF:基于机器学习的大规模随机规划计算框架
  • 批准号:
    2243355
  • 财政年份:
    2022
  • 资助金额:
    $ 77.09万
  • 项目类别:
    Standard Grant
PPoSS: LARGE: Intel: Combining Learning and Formal Verification for Scalable Machine Programming (ScaMP)
PPoSS:大:英特尔:结合学习和形式验证实现可扩展机器编程 (ScaMP)
  • 批准号:
    2217064
  • 财政年份:
    2022
  • 资助金额:
    $ 77.09万
  • 项目类别:
    Continuing Grant
Collaborative Research: Frameworks: Convergence of Bayesian inverse methods and scientific machine learning in Earth system models through universal differentiable programming
协作研究:框架:通过通用可微编程将贝叶斯逆方法和科学机器学习在地球系统模型中融合
  • 批准号:
    2103791
  • 财政年份:
    2021
  • 资助金额:
    $ 77.09万
  • 项目类别:
    Standard Grant
Collaborative Research: Frameworks: Convergence of Bayesian inverse methods and scientific machine learning in Earth system models through universal differentiable programming
协作研究:框架:通过通用可微编程将贝叶斯逆方法和科学机器学习在地球系统模型中融合
  • 批准号:
    2104009
  • 财政年份:
    2021
  • 资助金额:
    $ 77.09万
  • 项目类别:
    Standard Grant
Fog Machine: A Fault-Tolerant System and Programming Framework for Cloud of Moving Things
雾机:移动物云的容错系统和编程框架
  • 批准号:
    RGPIN-2017-05214
  • 财政年份:
    2021
  • 资助金额:
    $ 77.09万
  • 项目类别:
    Discovery Grants Program - Individual
Collaborative Research: Frameworks: Convergence of Bayesian inverse methods and scientific machine learning in Earth system models through universal differentiable programming
协作研究:框架:通过通用可微编程将贝叶斯逆方法和科学机器学习在地球系统模型中融合
  • 批准号:
    2103804
  • 财政年份:
    2021
  • 资助金额:
    $ 77.09万
  • 项目类别:
    Standard Grant
Combinatorial optimization in machine learning using constraint programming
使用约束规划的机器学习组合优化
  • 批准号:
    RGPIN-2017-04633
  • 财政年份:
    2021
  • 资助金额:
    $ 77.09万
  • 项目类别:
    Discovery Grants Program - Individual
Collaborative Research: Frameworks: Convergence of Bayesian inverse methods and scientific machine learning in Earth system models through universal differentiable programming
协作研究:框架:通过通用可微编程将贝叶斯逆方法和科学机器学习在地球系统模型中融合
  • 批准号:
    2147601
  • 财政年份:
    2021
  • 资助金额:
    $ 77.09万
  • 项目类别:
    Standard Grant
Collaborative Research: Frameworks: Convergence of Bayesian inverse methods and scientific machine learning in Earth system models through universal differentiable programming
协作研究:框架:通过通用可微编程将贝叶斯逆方法和科学机器学习在地球系统模型中融合
  • 批准号:
    2104068
  • 财政年份:
    2021
  • 资助金额:
    $ 77.09万
  • 项目类别:
    Standard Grant
Collaborative Research: Frameworks: Convergence of Bayesian inverse methods and scientific machine learning in Earth system models through universal differentiable programming
协作研究:框架:通过通用可微编程将贝叶斯逆方法和科学机器学习在地球系统模型中融合
  • 批准号:
    2103942
  • 财政年份:
    2021
  • 资助金额:
    $ 77.09万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了