RAPID: Dynamic Graph Neural Networks for Modeling and Monitoring COVID-19 Pandemic
RAPID:用于建模和监测 COVID-19 大流行的动态图神经网络
基本信息
- 批准号:2031187
- 负责人:
- 金额:$ 9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-06-01 至 2023-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The novel coronavirus, COVID-19, has become one of the biggest pandemics in human history and has generated lasting impacts on public health, society, and economy. The number of cases in the United States has passed 1 million with a total number of deaths over 50 thousand. There is an urgent need for research and development that can bring a predictive understanding of the spread of the virus, thereby enabling mitigation methods to alleviate the negative effects of COVID-19. Traditional epidemiological models usually take into consideration only a small number of features in building a prediction model, which may not be able to capture potential risk factors and effects of various intervention mechanisms of this new pandemic. In this project the investigators develop novel machine learning methods that can simultaneously model and predict the COVID-19 spread, detect and monitor risk factors, and evaluate effectiveness of interventions over time and space. The new model ingests and integrates heterogeneous and rapidly accumulating data across diverse sources, such as publications, news, census, social media, and outbreak observation trackers. It employs a new contextualized language model to accurately recognize named entities and relations from vast text data and build knowledge graphs to extract potential risk factors. A dynamic graph is constructed. Each location node may have a set of static and time-dependent attributes. Events, individual behaviors, social activities, interventions are mapped to activity nodes with edges connecting to the corresponding location nodes at the time. A novel dynamic graph neural network is trained to perform joint predictions of all locations over time. Activity nodes of significant attention weights represent major risk factors or effective intervention mechanisms. The project will result in public dissemination of the prediction model and all source codes, immediately benefiting the combat against COVID-19.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
新颖的冠状病毒Covid-19已成为人类历史上最大的大流行者之一,并对公共卫生,社会和经济产生了持久的影响。美国的案件数量已超过100万,死亡人数超过5万。迫切需要进行研究和发展,可以预测对病毒的传播有预测的理解,从而实现缓解方法来减轻Covid-19的负面影响。传统的流行病学模型通常仅考虑建立预测模型的少数功能,这可能无法捕获这种新大流行的各种干预机制的潜在风险因素和影响。在该项目中,研究人员开发了新型的机器学习方法,可以同时建模并预测COVID-19传播,检测和监测风险因素,并评估干预措施随时间和空间的有效性。新模型摄入并整合了跨不同来源的异质和迅速积累的数据,例如出版物,新闻,人口普查,社交媒体和爆发观察跟踪器。它采用一种新的上下文化语言模型来准确地识别庞大的文本数据的命名实体和关系,并构建知识图以提取潜在的风险因素。构建动态图。每个位置节点可能具有一组静态和时间相关的属性。事件,个人行为,社交活动,干预措施被映射到活动节点,并在当时连接到相应的位置节点。随着时间的推移,训练了一个新型的动态图神经网络,以对所有位置进行联合预测。重大注意力重量的活动节点代表主要的危险因素或有效的干预机制。该项目将导致对预测模型和所有源代码的公开传播,这立即受益于与Covid-12的战斗。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Generalizing Graph ODE for Learning Complex System Dynamics across Environments
- DOI:10.1145/3580305.3599362
- 发表时间:2023-07
- 期刊:
- 影响因子:0
- 作者:Zijie Huang;Yizhou Sun;Wei Wang
- 通讯作者:Zijie Huang;Yizhou Sun;Wei Wang
Learning Continuous System Dynamics from Irregularly-Sampled Partial Observations
- DOI:
- 发表时间:2020-11
- 期刊:
- 影响因子:0
- 作者:Zijie Huang;Yizhou Sun;Wei Wang-
- 通讯作者:Zijie Huang;Yizhou Sun;Wei Wang-
DICE: Data-Efficient Clinical Event Extraction with Generative Models
- DOI:10.48550/arxiv.2208.07989
- 发表时间:2022-08
- 期刊:
- 影响因子:3
- 作者:Mingyu Derek Ma;Alex S. Taylor;Wei Wang;Nanyun Peng
- 通讯作者:Mingyu Derek Ma;Alex S. Taylor;Wei Wang;Nanyun Peng
Coupled Graph ODE for Learning Interacting System Dynamics
- DOI:10.1145/3447548.3467385
- 发表时间:2021-01-01
- 期刊:
- 影响因子:0
- 作者:Huang, Zijie;Sun, Yizhou;Wang, Wei
- 通讯作者:Wang, Wei
COVID-19 Surveiller: toward a robust and effective pandemic surveillance system basedon social media mining.
- DOI:10.1098/rsta.2021.0125
- 发表时间:2022-01-10
- 期刊:
- 影响因子:0
- 作者:Jiang JY;Zhou Y;Chen X;Jhou YR;Zhao L;Liu S;Yang PC;Ahmar J;Wang W
- 通讯作者:Wang W
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wei Wang其他文献
Synergistic antitumor efficacy of combined DNA vaccines targeting tumor cells and angiogenesis.
针对肿瘤细胞和血管生成的联合 DNA 疫苗的协同抗肿瘤功效。
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Xiaotao Yin;Wei Wang;Xiaoming Zhu;Yu Wang;Shuai Wu;Zicheng Wang;Lin Wang;Z. Du;Jiangping Gao;Ji - 通讯作者:
Ji
Design and test of a 10 kV HV brushing for triaxial HTS cable termination
三轴高温超导电缆终端 10 kV 高压电刷的设计与测试
- DOI:
10.1088/1755-1315/772/1/012033 - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Xiaochen Wu;Ziheng Hu;Bin Zhang;Zhenzi Wang;Wei Wang;Zhe Wang;Bangzhu Wang - 通讯作者:
Bangzhu Wang
ARIMA Forecasting Chinese Macroeconomic Variables Based on Factor and Principal Component Backdating
基于因子和主成分回溯的 ARIMA 预测中国宏观经济变量
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Wei Wang;Yan Liu - 通讯作者:
Yan Liu
[Visual search in Alzheimer disease--an functional magnetic resonance imaging study].
[阿尔茨海默病的视觉搜索——一项功能性磁共振成像研究]。
- DOI:
- 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
Jing Hao;Kun Li;Wei Wang;Yan;Ke Li;Bin Yan;D. Zhan - 通讯作者:
D. Zhan
Design and Autonomous Co ntrol of 12-Rotor Type Flying Robot
12旋翼式飞行机器人设计与自主控制
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Yuze Song;Daisuke Iwakura;Wei Wang;Kenzo Nonami - 通讯作者:
Kenzo Nonami
Wei Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wei Wang', 18)}}的其他基金
CAREER: Harnessing the Interplay of Morphology, Viscoelasticity, and Surface-Active Agents to Modulate Soft Wetting
职业:利用形态、粘弹性和表面活性剂的相互作用来调节软润湿
- 批准号:
2336504 - 财政年份:2024
- 资助金额:
$ 9万 - 项目类别:
Continuing Grant
An Educational Tool for Teaching and Learning Concurrent Computer Programming Techniques
用于教授和学习并行计算机编程技术的教育工具
- 批准号:
2215359 - 财政年份:2022
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Exploiting Performance Correlations for Accurate and Low-cost Performance Testing for Serverless Computing
协作研究:SHF:小型:利用性能相关性对无服务器计算进行准确且低成本的性能测试
- 批准号:
2155096 - 财政年份:2022
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Enhancing Security and Privacy of Augmented Reality Mobile Applications through Software Behavior Analysis
合作研究:EAGER:通过软件行为分析增强增强现实移动应用程序的安全性和隐私性
- 批准号:
2221843 - 财政年份:2022
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
PIPP Phase I: An End-to-End Pandemic Early Warning System by Harnessing Open-source Intelligence
PIPP 第一阶段:利用开源情报的端到端流行病预警系统
- 批准号:
2200274 - 财政年份:2022
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
Enhancing Programming and Machine Learning Education for Students with Visual Impairments through the Use of Compilers, AI and Cloud Technologies
通过使用编译器、人工智能和云技术加强对视力障碍学生的编程和机器学习教育
- 批准号:
2202632 - 财政年份:2022
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
Collaborative Research: A Bioinspired Approach towards Sustainable Membranes for Resilient Brine Treatment
合作研究:用于弹性盐水处理的可持续膜的仿生方法
- 批准号:
2226501 - 财政年份:2022
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
III: Medium: Collaborative Research: Collaborative Machine-Learning-Centric Data Analytics at Scale
III:媒介:协作研究:以机器学习为中心的大规模协作数据分析
- 批准号:
2106859 - 财政年份:2021
- 资助金额:
$ 9万 - 项目类别:
Continuing Grant
Collaborative Research; RUI: Non-Orthogonal Multiple Access Pricing for Wireless Multimedia Communications
合作研究;
- 批准号:
2010284 - 财政年份:2020
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
SusChEM: Direct functionalization of aldehydes enabled by aminocatalysis
SusChEM:通过氨基催化实现醛的直接官能化
- 批准号:
1903983 - 财政年份:2019
- 资助金额:
$ 9万 - 项目类别:
Continuing Grant
相似国自然基金
基于并行成像技术的在线动态磁共振成像的实时重构算法研究
- 批准号:61861023
- 批准年份:2018
- 资助金额:36.0 万元
- 项目类别:地区科学基金项目
基于图形理论的椭圆摄动轨道自主航天器编队动态信息交互最优鲁棒协同控制
- 批准号:61403100
- 批准年份:2014
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
基于旋转不变Gabor特征的视频动态几何与纹理提取技术研究
- 批准号:61202154
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
基于GPU加速的高动态范围图像局域色调映射算法的研究与应用
- 批准号:60903128
- 批准年份:2009
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
基于动态图形模型和音视频的情感识别方法的研究
- 批准号:60673190
- 批准年份:2006
- 资助金额:23.0 万元
- 项目类别:面上项目
相似海外基金
CAREER: Theory for Dynamic Graph Algorithms
职业:动态图算法理论
- 批准号:
2238138 - 财政年份:2023
- 资助金额:
$ 9万 - 项目类别:
Continuing Grant
Integrated Network Analysis of RADx-UP Data to Increase COVID-19 Testing and Vaccination Among Persons Involved with Criminal Legal Systems (PCLS)
RADx-UP 数据的综合网络分析可提高刑事法律系统 (PCLS) 相关人员的 COVID-19 检测和疫苗接种率
- 批准号:
10879972 - 财政年份:2023
- 资助金额:
$ 9万 - 项目类别:
Collaborative Research: NCS-FO: Dynamic Brain Graph Mining
合作研究:NCS-FO:动态脑图挖掘
- 批准号:
2319450 - 财政年份:2023
- 资助金额:
$ 9万 - 项目类别:
Continuing Grant
Learn Systems Biology Equations From Snapshot Single Cell Genomic Data
从快照单细胞基因组数据学习系统生物学方程
- 批准号:
10736507 - 财政年份:2023
- 资助金额:
$ 9万 - 项目类别:
Collaborative Research: NCS-FO: Dynamic Brain Graph Mining
合作研究:NCS-FO:动态脑图挖掘
- 批准号:
2319451 - 财政年份:2023
- 资助金额:
$ 9万 - 项目类别:
Standard Grant