III: Medium: Collaborative Research: Collaborative Machine-Learning-Centric Data Analytics at Scale
III:媒介:协作研究:以机器学习为中心的大规模协作数据分析
基本信息
- 批准号:2106859
- 负责人:
- 金额:$ 45.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-10-01 至 2024-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In recent years our society has enjoyed the huge value of online collaboration and sharing, as evidenced by popular cloud-based services such as Google Docs, Dropbox, GitHub, and Overleaf. These benefits become even more attractive due to the new norm of working remotely caused by the unprecedented Covid-19 pandemic. In this award the investigators want to answer the following question: is it possible to develop online systems to support cloud-based services for collaborative data analytics? This computing paradigm allows collaborators to jointly conduct an analysis job on a large amount of data. The investigator team is particularly interested in scenarios where collaborators are from multiple disciplines with different backgrounds, and the analytics is machine learning centric, since such tasks are becoming increasingly common and important. While collaborators in data analytics want to focus on their research topics and fully utilize their expertise and skills, they are also facing challenges due to their complementary backgrounds and asynchronous working schedules. As a consequence, the collaboration has both inter-disciplinary obstacles and intra-disciplinary obstacles. The goal of this award is to study these challenges and develop new techniques to support such novel online services to support collaborative data analytics. The investigator team identifies four unique research topics: 1) Allowing collaborators to debug the training process of a machine learning model by pausing and resuming the process or setting conditional breakpoints, as these tasks tend to be computationally intensive; 2) Enabling collaborative debugging of external user-defined functions in order to not only harness the popular data science libraries in Python and R, but also achieve a high performance using a parallel data-processing engine often written in other languages such as Java and Scala; 3) Supporting collaborative instance labeling and machine learning training and deployment between domain scientists and machine learning experts; and 4) Analyzing and mining the collected data workflows from collaborators to improve the user productivity to formulate new data analytics tasks. The developed techniques will bring the success of many cloud-based collaboration services to the increasingly important space of scalable data analytics using machine learning techniques. The solutions will significantly lower the barriers to entry in terms of enabling domain-specific analysts -- as opposed to computer-science-trained Big Data experts -- to gather and to efficiently, effectively, and interactively analyze large quantities of data in different domains.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
近年来,我们的社会享有在线协作和共享的巨大价值,这是由Google Docs,Dropbox,Github和Overleaf等流行的基于云的服务所证明的。由于前所未有的COVID-19,由于新工作的新规范,这些好处变得更加有吸引力。在此奖项中,调查人员想回答以下问题:是否可以开发在线系统来支持基于云的协作数据分析的服务?该计算范式使合作者可以在大量数据上共同执行分析工作。 研究者团队对合作者来自具有不同背景的多个学科的场景特别感兴趣,并且分析以机器学习为中心,因为这些任务变得越来越普遍和重要。尽管数据分析的合作者希望专注于他们的研究主题并充分利用其专业知识和技能,但由于其互补背景和异步工作时间表,他们也面临着挑战。 结果,该协作既有跨学科的障碍,也存在科明障碍。该奖项的目的是研究这些挑战并开发新技术,以支持这种新颖的在线服务以支持协作数据分析。 研究人员团队确定了四个独特的研究主题:1)允许合作者通过暂停和恢复过程或设定有条件的断点来调试机器学习模型的训练过程,因为这些任务往往是计算范围的; 2)启用外部用户定义功能的协作调试,不仅可以利用Python和R中的流行数据科学库,而且还使用经常用其他语言(例如Java和Scala)编写的并行数据处理引擎来实现高性能; 3)支持域科学家与机器学习专家之间的协作实例标签和机器学习培训和部署; 4)分析和挖掘从合作者那里分析收集的数据工作流程,以提高用户生产率以制定新的数据分析任务。开发的技术将使许多基于云的协作服务的成功进入使用机器学习技术越来越重要的可扩展数据分析的空间。这些解决方案将大大降低进入特定领域的分析师(而不是由计算机科学培训的大数据专家)收集,有效,有效,互动分析不同领域中的大量数据。该奖项的奖项反映了NSF的法规和经过评估的支持者,该奖项反映了该奖项的知识群体和众所周知的基础。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Scalable Graph Representation Learning via Locality-Sensitive Hashing
- DOI:10.1145/3511808.3557689
- 发表时间:2022-01-01
- 期刊:
- 影响因子:0
- 作者:Chen, Xiusi;Jiang, Jyun-Yu;Wang, Wei
- 通讯作者:Wang, Wei
Where Does Your News Come From? Predicting Information Pathways in Social Media
- DOI:10.1145/3539618.3592087
- 发表时间:2023-07
- 期刊:
- 影响因子:0
- 作者:Alexander K. Taylor;Nuan Wen;Po-Nien Kung;Jiaao Chen;Violet Peng;W. Wang
- 通讯作者:Alexander K. Taylor;Nuan Wen;Po-Nien Kung;Jiaao Chen;Violet Peng;W. Wang
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wei Wang其他文献
Synergistic antitumor efficacy of combined DNA vaccines targeting tumor cells and angiogenesis.
针对肿瘤细胞和血管生成的联合 DNA 疫苗的协同抗肿瘤功效。
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Xiaotao Yin;Wei Wang;Xiaoming Zhu;Yu Wang;Shuai Wu;Zicheng Wang;Lin Wang;Z. Du;Jiangping Gao;Ji - 通讯作者:
Ji
Design and test of a 10 kV HV brushing for triaxial HTS cable termination
三轴高温超导电缆终端 10 kV 高压电刷的设计与测试
- DOI:
10.1088/1755-1315/772/1/012033 - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Xiaochen Wu;Ziheng Hu;Bin Zhang;Zhenzi Wang;Wei Wang;Zhe Wang;Bangzhu Wang - 通讯作者:
Bangzhu Wang
ARIMA Forecasting Chinese Macroeconomic Variables Based on Factor and Principal Component Backdating
基于因子和主成分回溯的 ARIMA 预测中国宏观经济变量
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Wei Wang;Yan Liu - 通讯作者:
Yan Liu
[Visual search in Alzheimer disease--an functional magnetic resonance imaging study].
[阿尔茨海默病的视觉搜索——一项功能性磁共振成像研究]。
- DOI:
- 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
Jing Hao;Kun Li;Wei Wang;Yan;Ke Li;Bin Yan;D. Zhan - 通讯作者:
D. Zhan
Design and Autonomous Co ntrol of 12-Rotor Type Flying Robot
12旋翼式飞行机器人设计与自主控制
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Yuze Song;Daisuke Iwakura;Wei Wang;Kenzo Nonami - 通讯作者:
Kenzo Nonami
Wei Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wei Wang', 18)}}的其他基金
CAREER: Harnessing the Interplay of Morphology, Viscoelasticity, and Surface-Active Agents to Modulate Soft Wetting
职业:利用形态、粘弹性和表面活性剂的相互作用来调节软润湿
- 批准号:
2336504 - 财政年份:2024
- 资助金额:
$ 45.5万 - 项目类别:
Continuing Grant
An Educational Tool for Teaching and Learning Concurrent Computer Programming Techniques
用于教授和学习并行计算机编程技术的教育工具
- 批准号:
2215359 - 财政年份:2022
- 资助金额:
$ 45.5万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Exploiting Performance Correlations for Accurate and Low-cost Performance Testing for Serverless Computing
协作研究:SHF:小型:利用性能相关性对无服务器计算进行准确且低成本的性能测试
- 批准号:
2155096 - 财政年份:2022
- 资助金额:
$ 45.5万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Enhancing Security and Privacy of Augmented Reality Mobile Applications through Software Behavior Analysis
合作研究:EAGER:通过软件行为分析增强增强现实移动应用程序的安全性和隐私性
- 批准号:
2221843 - 财政年份:2022
- 资助金额:
$ 45.5万 - 项目类别:
Standard Grant
PIPP Phase I: An End-to-End Pandemic Early Warning System by Harnessing Open-source Intelligence
PIPP 第一阶段:利用开源情报的端到端流行病预警系统
- 批准号:
2200274 - 财政年份:2022
- 资助金额:
$ 45.5万 - 项目类别:
Standard Grant
Enhancing Programming and Machine Learning Education for Students with Visual Impairments through the Use of Compilers, AI and Cloud Technologies
通过使用编译器、人工智能和云技术加强对视力障碍学生的编程和机器学习教育
- 批准号:
2202632 - 财政年份:2022
- 资助金额:
$ 45.5万 - 项目类别:
Standard Grant
Collaborative Research: A Bioinspired Approach towards Sustainable Membranes for Resilient Brine Treatment
合作研究:用于弹性盐水处理的可持续膜的仿生方法
- 批准号:
2226501 - 财政年份:2022
- 资助金额:
$ 45.5万 - 项目类别:
Standard Grant
RAPID: Dynamic Graph Neural Networks for Modeling and Monitoring COVID-19 Pandemic
RAPID:用于建模和监测 COVID-19 大流行的动态图神经网络
- 批准号:
2031187 - 财政年份:2020
- 资助金额:
$ 45.5万 - 项目类别:
Standard Grant
Collaborative Research; RUI: Non-Orthogonal Multiple Access Pricing for Wireless Multimedia Communications
合作研究;
- 批准号:
2010284 - 财政年份:2020
- 资助金额:
$ 45.5万 - 项目类别:
Standard Grant
SusChEM: Direct functionalization of aldehydes enabled by aminocatalysis
SusChEM:通过氨基催化实现醛的直接官能化
- 批准号:
1903983 - 财政年份:2019
- 资助金额:
$ 45.5万 - 项目类别:
Continuing Grant
相似国自然基金
复合低维拓扑材料中等离激元增强光学响应的研究
- 批准号:12374288
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
基于管理市场和干预分工视角的消失中等企业:特征事实、内在机制和优化路径
- 批准号:72374217
- 批准年份:2023
- 资助金额:41.00 万元
- 项目类别:面上项目
托卡马克偏滤器中等离子体的多尺度算法与数值模拟研究
- 批准号:12371432
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
中等质量黑洞附近的暗物质分布及其IMRI系统引力波回波探测
- 批准号:12365008
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
中等垂直风切变下非对称型热带气旋快速增强的物理机制研究
- 批准号:42305004
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
III : Medium: Collaborative Research: From Open Data to Open Data Curation
III:媒介:协作研究:从开放数据到开放数据管理
- 批准号:
2420691 - 财政年份:2024
- 资助金额:
$ 45.5万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: Designing AI Systems with Steerable Long-Term Dynamics
合作研究:III:中:设计具有可操纵长期动态的人工智能系统
- 批准号:
2312865 - 财政年份:2023
- 资助金额:
$ 45.5万 - 项目类别:
Standard Grant
Collaborative Research: III: MEDIUM: Responsible Design and Validation of Algorithmic Rankers
合作研究:III:媒介:算法排序器的负责任设计和验证
- 批准号:
2312932 - 财政年份:2023
- 资助金额:
$ 45.5万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: Algorithms for scalable inference and phylodynamic analysis of tumor haplotypes using low-coverage single cell sequencing data
合作研究:III:中:使用低覆盖率单细胞测序数据对肿瘤单倍型进行可扩展推理和系统动力学分析的算法
- 批准号:
2415562 - 财政年份:2023
- 资助金额:
$ 45.5万 - 项目类别:
Standard Grant
III: Medium: Collaborative Research: Integrating Large-Scale Machine Learning and Edge Computing for Collaborative Autonomous Vehicles
III:媒介:协作研究:集成大规模机器学习和边缘计算以实现协作自动驾驶汽车
- 批准号:
2348169 - 财政年份:2023
- 资助金额:
$ 45.5万 - 项目类别:
Continuing Grant