Collaborative Research: Energy Release and Transport in Impulsive Phase of Solar Flares
合作研究:太阳耀斑脉冲阶段的能量释放和传输
基本信息
- 批准号:1916511
- 负责人:
- 金额:$ 27.66万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
As we continue to spread our technological reach into space, we are beginning to grasp how dangerous and inhospitable it can be. An often overlooked danger comes from the source of energy in our solar system: the Sun. The seemingly static and abiding facet of our cosmic neighborhood provides a constant and reliable stream of heat and light, but this can change in an instant and without warning. Coronal Mass Ejections (CMEs) are violent eruptions that see plasma structures hundreds of times the size of the Earth reach out of the sun and blast into space. This large concentration of unstable magnetic energy on the surface of the Sun can often be characterized by bright flashes of light, X-rays, ultraviolet and gamma rays commonly known as Solar Flares. These events are an almost daily occurrence during solar activity maxima and are a source of energetic particles and radiation which can be very harmful to space missions, communications and GPS satellites, and especially to manned space operations such as the ISS. In rare cases, these high energy phenomena may even threaten our safety on Earth: a massive solar event was felt around the world in 1859 as highly energetic solar particles rained down on our planet, creating dancing lights in the atmosphere; an aurora that stretched from the North Pole all the way to New York City. A key aspect of our Nation's continued foray into space along with well thought out plans of defense lie in the scientific characterization and understanding of such powerful and seemingly unpredictable phenomena. Safety in space is one of our most important priorities, and the key to venturing outside of our planet lies in the understanding of the energetic heart of our solar system. This three-year project addresses the fundamental problem of how the energy is produced, released and transported on the Sun during most extreme flare events. The study leads to better understanding of mechanisms of solar energetic particles and their impacts, as well as to development of advanced predictive capabilities. The project involves students at NJIT and University of Colorado who will answer outstanding questions about the fundamental physics of solar flare energy production and release. The student's results will be presented at professional conferences and summer programs, as well as also at the University student events, thus, promoting STEM education, as well as environmental and space studies.Recent observational and modeling results showed that the standard model of solar flares, which consider that the primary energy release in the impulsive phase is in the form of high-energy electron beams, are not capable to explain the observed impacts in the solar atmosphere and the flare dynamics. Thus, it is necessary to consider other mechanisms of the energy release and transport, such as proton beams and mixed electron-proton (neutral) beams. Using currently available computational models and multi-instrument data, the team performs a comprehensive investigation and derives properties of the flaring plasma and accelerated particles during the impulsive phase. The project specific tasks are: (i) perform quantitative multi-instrument analysis of the flare emission, spectroscopic and magnetic field data; (ii) model the dynamic response of the solar atmosphere to various energy release channels (including electron, proton and neutral beams of different energy fluxes, and heat flux) by performing radiative hydrodynamics simulations; (iii) using the flare dynamical models and radiation codes, analyze the emission and spectral characteristics for the various energy release channels; and, (iv) by comparing the model characteristics with the data analysis results deduce properties of flare energy release in the impulsive phase. The research and EPO agenda of this project supports the Strategic Goals of the AGS Division in discovery, learning, diversity, and interdisciplinary research.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
随着我们继续将技术延伸到太空,我们开始意识到它是多么危险和不适合居住。 一个经常被忽视的危险来自我们太阳系的能量来源:太阳。 我们宇宙邻居的看似静态和持久的方面提供了一个恒定和可靠的热和光的流,但这可以在瞬间改变,没有警告。 日冕物质抛射(CME)是一种剧烈的喷发,它会看到数百倍于地球大小的等离子体结构从太阳中伸出并爆炸到太空中。 这种在太阳表面大量聚集的不稳定磁能通常可以通过明亮的闪光,X射线,紫外线和伽马射线来表征,通常被称为太阳耀斑。 这些事件在太阳活动最大期间几乎每天都发生,是高能粒子和辐射的来源,对空间飞行任务、通信和全球定位系统卫星,特别是对国际空间站等载人空间活动非常有害。 在极少数情况下,这些高能现象甚至可能威胁到我们在地球上的安全:1859年,当高能太阳粒子雨点般落在我们的星球上时,世界各地都感受到了一次大规模的太阳活动,在大气中创造了舞动的光线;极光从北极一直延伸到纽约市。 我们国家沿着深思熟虑的防御计划继续进军太空的一个关键方面在于对这种强大而看似不可预测的现象的科学表征和理解。 太空安全是我们最重要的优先事项之一,在我们的星球之外冒险的关键在于了解我们太阳系的能量中心。 这个为期三年的项目解决了在大多数极端耀斑事件期间太阳如何产生、释放和运输能量的根本问题。 这项研究有助于更好地了解太阳高能粒子的机制及其影响,并有助于发展先进的预测能力。 该项目涉及NJIT和科罗拉多大学的学生,他们将回答有关太阳耀斑能量产生和释放的基本物理学问题。 学生的研究结果将在专业会议和暑期项目以及大学学生活动中展示,从而促进STEM教育以及环境和空间研究。最近的观测和建模结果表明,太阳耀斑的标准模型,认为脉冲阶段的初级能量释放是以高能电子束的形式,无法解释观测到的对太阳大气层的影响和耀斑动态。 因此,有必要考虑能量释放和传输的其他机制,例如质子束和混合电子-质子(中性)束。 利用目前可用的计算模型和多仪器数据,该团队进行了全面的调查,并推导出脉冲阶段燃烧等离子体和加速粒子的特性。 该项目的具体任务是:(i)对耀斑发射、光谱和磁场数据进行定量多仪器分析;(ii)模拟太阳大气对各种能量释放渠道的动态响应(包括不同能量通量和热通量的电子、质子和中性束);(iii)利用耀斑动力学模型和辐射程序,分析不同能量释放通道的辐射和光谱特征;(iv)通过模型特征和数据分析结果的比较,推断耀斑能量释放在脉冲阶段的性质。 该项目的研究和EPO议程支持AGS部门在发现、学习、多样性和跨学科研究方面的战略目标。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The Atmospheric Response to High Nonthermal Electron-beam Fluxes in Solar Flares. II. Hydrogen-broadening Predictions for Solar Flare Observations with the Daniel K. Inouye Solar Telescope
- DOI:10.3847/1538-4357/ac5174
- 发表时间:2022-01
- 期刊:
- 影响因子:0
- 作者:A. Kowalski;J. Allred;M. Carlsson;G. Kerr;P. Tremblay;K. Namekata;D. Kuridze;H. Uitenbroek
- 通讯作者:A. Kowalski;J. Allred;M. Carlsson;G. Kerr;P. Tremblay;K. Namekata;D. Kuridze;H. Uitenbroek
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Adam Kowalski其他文献
多波長モニタ観測で探るM型星フレアのバルマー線の輝線輪郭非対称性
使用多波长监测观测探索 M 型恒星耀斑巴尔默线的不对称性
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
野津湧太;Adam Kowalski;前原裕之;行方宏介;本田敏志;榎戸輝揚 (理研);濱口健二;野津翔太;岡本壮師;幾田佳;野上大作;柴田一成;James Davenport;Suzanne Hawley - 通讯作者:
Suzanne Hawley
Investigation of mixing miscible liquids with high viscosity contrasts in turbulently stirred vessels using electrical resistance tomography
- DOI:
10.1016/j.cej.2024.149712 - 发表时间:
2024-04-15 - 期刊:
- 影响因子:
- 作者:
Sorosh Mirfasihi;Wrichik Basu;Philip Martin;Adam Kowalski;Claudio P. Fonte;Amir Keshmiri - 通讯作者:
Amir Keshmiri
ORGANIC GEOCHEMISTRY OF MIDDLE MIOCENE (BADENIAN – SARMATIAN) SOURCE ROCKS AND MATURATION MODELLING IN THE POLISH AND UKRAINIAN SECTORS OF THE EXTERNAL CARPATHIAN FOREDEEP
中新世中期(巴德尼阶 - 萨尔马提亚阶)源岩的有机地球化学和外喀尔巴阡山脉前深部波兰和乌克兰部分的成熟度模拟
- DOI:
10.1111/jpg.12766 - 发表时间:
2020 - 期刊:
- 影响因子:1.8
- 作者:
P. Kosakowski;G. Machowski;Adam Kowalski;Y. V. Koltun;A. Zakrzewski;A. Sowiżdżał;M. Stadtműller - 通讯作者:
M. Stadtműller
Integrating feature attribution and symbolic regression for automatic model structure identification and strategic sampling
整合特征归因和符号回归以实现自动模型结构识别和策略性采样
- DOI:
10.1016/j.compchemeng.2025.109036 - 发表时间:
2025-06-01 - 期刊:
- 影响因子:3.900
- 作者:
Alexander W. Rogers;Amanda Lane;Cesar Mendoza;Simon Watson;Adam Kowalski;Philip Martin;Dongda Zhang - 通讯作者:
Dongda Zhang
A numerical study on the mixing time prediction of miscible liquids with high viscosity ratios in turbulently stirred vessels
具有高粘度比的互溶液体在湍流搅拌容器中混合时间预测的数值研究
- DOI:
10.1016/j.ces.2024.120944 - 发表时间:
2025-02-01 - 期刊:
- 影响因子:4.300
- 作者:
Sorosh Mirfasihi;Wrichik Basu;Philip Martin;Adam Kowalski;Claudio P. Fonte;Amir Keshmiri - 通讯作者:
Amir Keshmiri
Adam Kowalski的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Material Simulation-driven Electrolyte Designs in Intermediate-temperature Na-K / S Batteries for Long-duration Energy Storage
合作研究:用于长期储能的中温Na-K / S电池中材料模拟驱动的电解质设计
- 批准号:
2341994 - 财政年份:2024
- 资助金额:
$ 27.66万 - 项目类别:
Standard Grant
Collaborative Research: Environmentally Sustainable Anode Materials for Electrochemical Energy Storage using Particulate Matter Waste from the Combustion of Fossil Fuels
合作研究:利用化石燃料燃烧产生的颗粒物废物进行电化学储能的环境可持续阳极材料
- 批准号:
2344722 - 财政年份:2024
- 资助金额:
$ 27.66万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Energy for persistent sensing of carbon dioxide under near shore waves.
合作研究:EAGER:近岸波浪下持续感知二氧化碳的能量。
- 批准号:
2339062 - 财政年份:2024
- 资助金额:
$ 27.66万 - 项目类别:
Standard Grant
Collaborative Research: Reversible Computing and Reservoir Computing with Magnetic Skyrmions for Energy-Efficient Boolean Logic and Artificial Intelligence Hardware
合作研究:用于节能布尔逻辑和人工智能硬件的磁斯格明子可逆计算和储层计算
- 批准号:
2343606 - 财政年份:2024
- 资助金额:
$ 27.66万 - 项目类别:
Standard Grant
Collaborative Research: Environmentally Sustainable Anode Materials for Electrochemical Energy Storage using Particulate Matter Waste from the Combustion of Fossil Fuels
合作研究:利用化石燃料燃烧产生的颗粒物废物进行电化学储能的环境可持续阳极材料
- 批准号:
2344723 - 财政年份:2024
- 资助金额:
$ 27.66万 - 项目类别:
Standard Grant
Collaborative Research: Material Simulation-driven Electrolyte Designs in Intermediate-temperature Na-K / S Batteries for Long-duration Energy Storage
合作研究:用于长期储能的中温Na-K / S电池中材料模拟驱动的电解质设计
- 批准号:
2341995 - 财政年份:2024
- 资助金额:
$ 27.66万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Energy for persistent sensing of carbon dioxide under near shore waves.
合作研究:EAGER:近岸波浪下持续感知二氧化碳的能量。
- 批准号:
2339061 - 财政年份:2024
- 资助金额:
$ 27.66万 - 项目类别:
Standard Grant
Collaborative Research: FET: Medium:Compact and Energy-Efficient Compute-in-Memory Accelerator for Deep Learning Leveraging Ferroelectric Vertical NAND Memory
合作研究:FET:中型:紧凑且节能的内存计算加速器,用于利用铁电垂直 NAND 内存进行深度学习
- 批准号:
2312886 - 财政年份:2023
- 资助金额:
$ 27.66万 - 项目类别:
Standard Grant
Collaborative Research: FET: Medium:Compact and Energy-Efficient Compute-in-Memory Accelerator for Deep Learning Leveraging Ferroelectric Vertical NAND Memory
合作研究:FET:中型:紧凑且节能的内存计算加速器,用于利用铁电垂直 NAND 内存进行深度学习
- 批准号:
2312884 - 财政年份:2023
- 资助金额:
$ 27.66万 - 项目类别:
Standard Grant
Collaborative Research: Learning-Assisted Estimation and Management of Flexible Energy Resources in Active Distribution Networks
合作研究:主动配电网络中灵活能源的学习辅助估计和管理
- 批准号:
2313768 - 财政年份:2023
- 资助金额:
$ 27.66万 - 项目类别:
Standard Grant