Perspectives in Representation Theory
表示论的观点
基本信息
- 批准号:1205125
- 负责人:
- 金额:$ 4.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-02-01 至 2013-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The conference "Perspectives in representation theory" will be a meeting of mathematicians working in representation theory, with an emphasis on its relations to other subjects (notably, topology, algebraic geometry, number theory, and mathematical physics). The conference will be held on May 12-17, 2012 at Yale University, in honor of the 60th birthday of Prof. Igor Frenkel. The speakers have made and continue to make major contributions to the field, and are responsible for a vast web of connections of representation theory with other areas of mathematics and physics. The aim of the conference is to present current progress on the following (interrelated) topics: vertex operator algebras and chiral algebras, conformal field theory, the (geometric) Langlands program, affine Lie algebras, Kac-Moody algebras, quantum groups, crystal bases and canonical bases, quantum cohomology and K-theory, geometric representation theory, categorification, higher-dimensional Kac-Moody theory, integrable systems, quiver varieties, representations of real and p-adic groups, and quantum gauge theories. Thus the conference will be an occasion to discuss representation theory in the context of its connections with numerous other subjects, and to discuss some of the most recent advances in representation theory, including those which occurred thanks to application of techniques in other areas of mathematics and physics, including ideas from quantum field theory and string theory. Further details can be found on the conference website at http://www.math.yale.edu/frenkel60Algebra is one of the oldest areas in mathematics. It encompasses a wide range of subjects from simple algebraic equations and polynomials to linear and abstract algebra. The study of symmetries is related to a branch of algebra called 'representation theory'. Representation theory has a vast array of applications in other areas of mathematics and physics. It is often through the study of representations that we learn about the innermost workings of our physical universe. While the origins of representation theory are algebraic, modern representation theory incorporates ideas from other branches of mathematics such as geometry, combinatorics, and category theory (a theory whose aim is to organize mathematical structure). These connections to new fields have both increased our knowledge in the area of representation theory as well as developed new applications of its ideas. The conference "Perspectives in representation theory" will be a gathering of some of the world's leading experts in this exciting field.
“表示理论的视角”会议将是研究表示理论的数学家的会议,重点是它与其他学科(特别是拓扑、代数几何、数论和数学物理)的关系。会议将于2012年5月12日至17日在耶鲁大学举行,以纪念伊戈尔·弗兰克尔教授60岁生日。演讲者已经并将继续为该领域做出重大贡献,并负责将表征理论与其他数学和物理领域联系起来的庞大网络。会议的目的是介绍下列(相互关联的)主题的最新进展:顶点算子代数和手性代数、共形场论、(几何)朗兰兹规划、仿射李代数、Kac-Moody代数、量子群、晶体基和正则基、量子上同调和k -理论、几何表示论、分类、高维Kac-Moody理论、可积系统、颤变、实数群和p进群的表示、量子规范理论。因此,这次会议将是一个讨论表征理论与许多其他学科联系的场合,并讨论表征理论的一些最新进展,包括那些由于在其他数学和物理领域的技术应用而发生的进展,包括量子场论和弦理论的思想。更多的细节可以在会议网站http://www.math.yale.edu/frenkel60Algebra上找到,这是数学中最古老的领域之一。它涵盖了从简单的代数方程和多项式到线性和抽象代数的广泛主题。对称的研究与代数的一个分支“表示理论”有关。表征理论在数学和物理的其他领域有广泛的应用。通常是通过对表征的研究,我们了解到物质世界最深处的运作。虽然表示理论的起源是代数的,但现代表示理论融合了其他数学分支的思想,如几何、组合学和范畴论(旨在组织数学结构的理论)。这些与新领域的联系既增加了我们在表征理论领域的知识,也开发了表征理论思想的新应用。“表征理论的视角”会议将是这个令人兴奋的领域的一些世界领先专家的聚会。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gregg Zuckerman其他文献
Generalized Harish-Chandra Modules: A New Direction in the Structure Theory of Representations
- DOI:
10.1023/b:acap.0000024204.22996.2c - 发表时间:
2004-03-01 - 期刊:
- 影响因子:1.000
- 作者:
Ivan Penkov;Gregg Zuckerman - 通讯作者:
Gregg Zuckerman
Gregg Zuckerman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gregg Zuckerman', 18)}}的其他基金
Mathematical Sciences: Conformal Field Theory and Its Generalizations
数学科学:共形场论及其推广
- 批准号:
9627782 - 财政年份:1996
- 资助金额:
$ 4.99万 - 项目类别:
Continuing Grant
Mathematical Sciences: Problems in Conformal Field Theory
数学科学:共形场论问题
- 批准号:
9307086 - 财政年份:1993
- 资助金额:
$ 4.99万 - 项目类别:
Continuing Grant
Mathematical Sciences: Group Representations & Conformal Field Theory
数学科学:群表示
- 批准号:
9008459 - 财政年份:1990
- 资助金额:
$ 4.99万 - 项目类别:
Continuing Grant
Mathematical Sciences: Invariant Variational Problems and Quantization
数学科学:不变变分问题和量化
- 批准号:
8703581 - 财政年份:1987
- 资助金额:
$ 4.99万 - 项目类别:
Continuing Grant
Mathematical Sciences: Infinite Dimensional Representations Of Lie Groups
数学科学:李群的无限维表示
- 批准号:
8401377 - 财政年份:1984
- 资助金额:
$ 4.99万 - 项目类别:
Continuing Grant
Infinite Dimensional Representations of Lie Groups
李群的无限维表示
- 批准号:
8005151 - 财政年份:1980
- 资助金额:
$ 4.99万 - 项目类别:
Standard Grant
相似海外基金
Wonderful Varieties, Hyperplane Arrangements, and Poisson Representation Theory
奇妙的品种、超平面排列和泊松表示论
- 批准号:
2401514 - 财政年份:2024
- 资助金额:
$ 4.99万 - 项目类别:
Continuing Grant
The 2nd brick-Brauer-Thrall conjecture via tau-tilting theory and representation varieties
通过 tau 倾斜理论和表示变体的第二个砖-布劳尔-萨尔猜想
- 批准号:
24K16908 - 财政年份:2024
- 资助金额:
$ 4.99万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Conference: Representation Theory and Related Geometry
会议:表示论及相关几何
- 批准号:
2401049 - 财政年份:2024
- 资助金额:
$ 4.99万 - 项目类别:
Standard Grant
Combinatorial Representation Theory of Quantum Groups and Coinvariant Algebras
量子群与协变代数的组合表示论
- 批准号:
2348843 - 财政年份:2024
- 资助金额:
$ 4.99万 - 项目类别:
Standard Grant
Higher Representation Theory and Subfactors
更高表示理论和子因素
- 批准号:
2400089 - 财政年份:2024
- 资助金额:
$ 4.99万 - 项目类别:
Standard Grant
Local Geometric Langlands Correspondence and Representation Theory
局部几何朗兰兹对应与表示理论
- 批准号:
2416129 - 财政年份:2024
- 资助金额:
$ 4.99万 - 项目类别:
Standard Grant
Representation Theory and Symplectic Geometry Inspired by Topological Field Theory
拓扑场论启发的表示论和辛几何
- 批准号:
2401178 - 财政年份:2024
- 资助金额:
$ 4.99万 - 项目类别:
Standard Grant
Representation Theory and Geometry in Monoidal Categories
幺半群范畴中的表示论和几何
- 批准号:
2401184 - 财政年份:2024
- 资助金额:
$ 4.99万 - 项目类别:
Continuing Grant
Development of a Causality Analysis Method for Point Processes Based on Nonlinear Dynamical Systems Theory and Elucidation of the Representation of Information Processing in the Brain
基于非线性动力系统理论的点过程因果分析方法的发展及大脑信息处理表征的阐明
- 批准号:
22KJ2815 - 财政年份:2023
- 资助金额:
$ 4.99万 - 项目类别:
Grant-in-Aid for JSPS Fellows
New Tendencies of French Film Theory: Representation, Body, Affect
法国电影理论新动向:再现、身体、情感
- 批准号:
23K00129 - 财政年份:2023
- 资助金额:
$ 4.99万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




