Rydberg-Atom Physics in Ponderomotive Traps and Atomic Imaging Devices
有质动力陷阱和原子成像装置中的里德伯原子物理学
基本信息
- 批准号:1205559
- 负责人:
- 金额:$ 51万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-08-15 至 2016-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In the project entitled "Rydberg-atom physics in ponderomotive traps and atomic imaging devices" optical-lattice dipole traps for Rydberg atoms are developed, improved and applied in research. These optical traps have trap-induced level shifts that are much smaller than those in static-field traps. They are therefore well suited for high-precision spectroscopy and quantum information processing applications that are currently of high interest. The lattices exhibit a rich variety of adiabatic trapping potentials, which are studied via laser spectroscopy. The effect of lattice-induced photo-ionization on the trapped Rydberg atoms is measured. A spectroscopic method is developed that is based on microwave modulation of the optical-lattice beams. The method allows the research team to drive high-order multipole transitions without the application of large fields, which would cause level shifts, and with high spatial resolution. The research team develops three-dimensional optical lattices for microwave spectroscopy of optically trapped circular-state Rydberg atoms. The work has the prospect of yielding a high-precision measurement of the Rydberg constant.In the second component of the work, a tip imaging probe (TIP) is employed to perform spatial-domain measurements of correlations in many-body Rydberg systems. In these systems, several de-localized Rydberg excitations are coherently shared between a large number of cold atoms in a highly entangled quantum state. The TIP system reads out the positions of individual Rydberg excitations in the sample via ion imaging. New measurements with the TIP setup allow the researchers to separate blockade-induced effects and effects due to Coulomb ion repulsion in the measured signals. The TIP experiment is applied to prepare and detect Rydberg atom crystals excited by adiabatic passage in randomly distributed samples of ground-state atoms.Trapping individual atoms continues to be a major theme in atomic, molecular and optical physics. In a so-called "optical lattice," several intersecting laser beams are used to form a periodic grid of trap sites to trap atoms. An optical lattice is much like an egg carton holding eggs at periodic locations (where an egg is the atom's analogue). In this project a Michigan research team develops such optical lattices for Rydberg atoms. A Rydberg atom is a giant atom with one very loosely bound electron that travels, on average, quite far away from the atom's center. The research community believes that, in the long term, Rydberg atoms in laser traps can be helpful in the development of powerful quantum computers, which can treat mathematical problems that ordinary computers cannot solve. The optical Rydberg atom traps the Michigan team develops also have the potential of yielding information on fundamental constants, such as the Rydberg constant. Measurements of such constants are of great value because they serve as tests of our current understanding of the composition of matter and the inner workings of nature. In the project, graduate and undergraduate students are trained in research, research presentation, and in peer instruction. The project as a whole has a broader impact on society in that students at all levels become prepared to assume important tasks in science, industry and education. The project is accompanied by outreach components that aim to encourage high-school students to consider careers in science or engineering, such as the Michigan Physics Olympiad.
在题为“有质动力阱和原子成像设备中的里德伯原子物理”的项目中,里德伯原子的光晶格偶极阱被开发、改进并应用于研究。这些光阱具有比静态场阱小得多的阱致能级位移。因此,它们非常适合目前备受关注的高精度光谱学和量子信息处理应用。晶格表现出丰富多样的绝热捕获势,这是通过激光光谱学研究。测量了晶格诱导光电离对囚禁里德堡原子的影响。提出了一种基于晶格光束微波调制的光谱分析方法。该方法允许研究团队在不应用大电场的情况下驱动高阶多极子跃迁,这会导致能级位移,并且具有高空间分辨率。该研究小组开发了三维光学晶格,用于光学捕获的圆形里德堡原子的微波光谱学。这项工作的前景产生一个高精度的测量的Rydberg constant.In第二部分的工作,针尖成像探针(TIP)进行空间域测量的相关性在多体Rydberg系统。在这些系统中,多个离域里德伯激发相干共享大量的冷原子在一个高度纠缠的量子态。TIP系统通过离子成像读取样品中各个里德堡激发的位置。使用TIP设置的新测量使研究人员能够在测量信号中分离阻塞诱导效应和库仑离子排斥效应。TIP实验用于制备和探测随机分布的基态原子样品中绝热通过激发的里德伯原子晶体。单个原子的捕获一直是原子、分子和光学物理的一个重要课题。 在所谓的“光学晶格”中,几束相交的激光束被用来形成一个周期性的陷阱网格来捕获原子。 光学晶格很像一个在周期性位置放置鸡蛋的鸡蛋盒(鸡蛋是原子的类似物)。在这个项目中,密歇根州的一个研究小组为里德伯原子开发了这样的光学晶格。里德堡原子是一个巨大的原子,具有一个束缚非常松散的电子,平均而言,该电子远离原子中心。研究界认为,从长远来看,激光阱中的里德伯原子可以帮助开发强大的量子计算机,它可以处理普通计算机无法解决的数学问题。密歇根团队开发的光学里德伯原子陷阱也有可能产生基本常数的信息,例如里德伯常数。对这些常数的测量具有很大的价值,因为它们可以检验我们目前对物质组成和自然内部运作的理解。 在这个项目中,研究生和本科生在研究,研究报告和同伴指导方面受到培训。 整个项目对社会产生了更广泛的影响,因为各级学生都准备好承担科学、工业和教育方面的重要任务。该项目还包括旨在鼓励高中生考虑从事科学或工程职业的外联部分,如密歇根物理奥林匹克竞赛。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Georg Raithel其他文献
Cesium nDJ + 6S1/2 Rydberg molecules and their permanent electric dipole moments
铯 nD J 6S 1/2 Rydberg 分子及其永久电偶极矩
- DOI:
10.1103/physrevresearch.2.033525 - 发表时间:
2020 - 期刊:
- 影响因子:4.2
- 作者:
Suying Bai;Xiaoxuan Han;Jingxu Bai;Yuechun Jiao;Jianming Zhao;Suotang Jia;Georg Raithel - 通讯作者:
Georg Raithel
Transition from electromagnetically induced transparency to Autler–Townes splitting in cold cesium atoms
- DOI:
doi.org/10.1088/1367-2630/aad153 - 发表时间:
2018 - 期刊:
- 影响因子:
- 作者:
Liping Hao;Yuechun Jiao;Yongmei Xue;Xiaoxuan Han;Suying Bai;Jianming Zhao;Georg Raithel - 通讯作者:
Georg Raithel
Georg Raithel的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Georg Raithel', 18)}}的其他基金
Spectroscopy and Quantum-State Manipulation of Excited Rb Atoms and Molecules Using Optical Lattices
使用光学晶格对激发的 Rb 原子和分子进行光谱学和量子态操纵
- 批准号:
2110049 - 财政年份:2021
- 资助金额:
$ 51万 - 项目类别:
Continuing Grant
Quantum Dynamics of Rydberg Atoms in Molecules and in Optical Lattices
分子和光学晶格中里德伯原子的量子动力学
- 批准号:
1806809 - 财政年份:2018
- 资助金额:
$ 51万 - 项目类别:
Continuing Grant
Structures and Electric Fields in Laser-Induced Magnetized Plasmas
激光诱导磁化等离子体中的结构和电场
- 批准号:
1707377 - 财政年份:2017
- 资助金额:
$ 51万 - 项目类别:
Continuing Grant
I-Corps: Atomic High Magnetic Field Sensors
I-Corps:原子强磁场传感器
- 批准号:
1624368 - 财政年份:2016
- 资助金额:
$ 51万 - 项目类别:
Standard Grant
Spectroscopy of Rydberg Atoms in Optical Lattices and Laser Traps
光学晶格和激光阱中里德伯原子的光谱学
- 批准号:
1506093 - 财政年份:2015
- 资助金额:
$ 51万 - 项目类别:
Standard Grant
Interactions of cold atoms in Rydberg states.
里德伯态中冷原子的相互作用。
- 批准号:
0555520 - 财政年份:2006
- 资助金额:
$ 51万 - 项目类别:
Continuing Grant
"FOCUS: Frontiers in Optical Coherent and Ultrafast Science"
“焦点:光学相干和超快科学的前沿”
- 批准号:
0114336 - 财政年份:2001
- 资助金额:
$ 51万 - 项目类别:
Cooperative Agreement
相似国自然基金
1keV/atom以下的团簇离子注入固体极浅表面的过程研究
- 批准号:11075076
- 批准年份:2010
- 资助金额:42.0 万元
- 项目类别:面上项目
相似海外基金
Intense laser-Atom Physics in Scaled Interactions
尺度相互作用中的强激光原子物理
- 批准号:
2207439 - 财政年份:2022
- 资助金额:
$ 51万 - 项目类别:
Continuing Grant
Physics of strongly-correlated topological spin-triplet superconductivity with uranium atom
铀原子强相关拓扑自旋三重态超导物理
- 批准号:
22H04933 - 财政年份:2022
- 资助金额:
$ 51万 - 项目类别:
Grant-in-Aid for Scientific Research (S)
Climate Change Physics; Precision Laser Spectroscopy; and Ultracold Atom Microtrap Arrays
气候变化物理学;
- 批准号:
RGPIN-2017-03717 - 财政年份:2022
- 资助金额:
$ 51万 - 项目类别:
Discovery Grants Program - Individual
Climate Change Physics; Precision Laser Spectroscopy; and Ultracold Atom Microtrap Arrays
气候变化物理学;
- 批准号:
RGPIN-2017-03717 - 财政年份:2021
- 资助金额:
$ 51万 - 项目类别:
Discovery Grants Program - Individual
Climate Change Physics; Precision Laser Spectroscopy; and Ultracold Atom Microtrap Arrays
气候变化物理学;
- 批准号:
RGPIN-2017-03717 - 财政年份:2020
- 资助金额:
$ 51万 - 项目类别:
Discovery Grants Program - Individual
Climate Change Physics; Precision Laser Spectroscopy; and Ultracold Atom Microtrap Arrays
气候变化物理学;
- 批准号:
RGPIN-2017-03717 - 财政年份:2019
- 资助金额:
$ 51万 - 项目类别:
Discovery Grants Program - Individual
Climate Change Physics; Precision Laser Spectroscopy; and Ultracold Atom Microtrap Arrays
气候变化物理学;
- 批准号:
RGPIN-2017-03717 - 财政年份:2018
- 资助金额:
$ 51万 - 项目类别:
Discovery Grants Program - Individual
Highly sensitive observation of cosmic-ray antiparticles using novel technologies and exotic-atom physics
利用新技术和奇异原子物理学对宇宙射线反粒子进行高灵敏度观测
- 批准号:
17H01136 - 财政年份:2017
- 资助金额:
$ 51万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Climate Change Physics; Precision Laser Spectroscopy; and Ultracold Atom Microtrap Arrays
气候变化物理学;
- 批准号:
RGPIN-2017-03717 - 财政年份:2017
- 资助金额:
$ 51万 - 项目类别:
Discovery Grants Program - Individual
Intense Laser-Atom Physics in Scaled Interactions
尺度相互作用中的强激光原子物理
- 批准号:
1605042 - 财政年份:2016
- 资助金额:
$ 51万 - 项目类别:
Standard Grant














{{item.name}}会员




