Structures and Electric Fields in Laser-Induced Magnetized Plasmas

激光诱导磁化等离子体中的结构和电场

基本信息

项目摘要

Ionized gases, or plasmas, are ubiquitous in nature, for example in lightning, the ionosphere, the sun, and many astrophysical environments. Plasmas are also common in technologies such as gas discharge lamps, microfabrication processes, fusion plasmas, combustion engines, and Hall thrusters. This project will develop new methods based on atomic spectroscopy to monitor the electric and magnetic fields inside of laser-generated laboratory plasmas. This is important because plasma fields are notoriously difficult to monitor, especially for small volumes of plasma, without influencing the particle distributions and fields. The research will pioneer novel quantum technologies that provide non-invasive plasma diagnostics. Shock fronts and ordered structures in plasmas will be studied, as well as the effects of magnetic fields on plasma dynamics. Due to the importance of plasmas in technology, plasma-physics research such as this drives advances in economic competitiveness and prosperity, national defense, space exploration, and communications. It also promotes progress in basic plasma science and astrophysics. Students affiliated with this project will get training that will help them prepare for careers in science, industry and education. This study is on small-scale, magnetized, and potentially strongly-coupled, plasmas obtained by laser-induced photo-ionization of atomic vapors. Both trapped atoms and room-temperature alkali-atom vapor cells will be used. As the photo-generated plasmas expand, they form shock fronts, and in the case of sufficiently strong coupling between ions and electrons the plasmas are expected to develop correlations with crystal-like order. This project will pioneer novel ways to make position- and time-resolved measurements of the expansion, the shock fronts, and the ordered structures in plasmas. A diagnostic method will be developed using laser spectroscopy with Rydberg atoms and electromagnetically-induced transparency (EIT). Electric fields in the plasma will be mapped via Rydberg-EIT spectroscopy. Another diagnostic will use micro-channel plates to count particles that are extracted from the plasma after a variable delay. The use of field-sensitive Rydberg-state tracer atoms embedded in the plasma as an all-optical diagnostic of macroscopic and random (Holtsmark) electric fields in plasmas may impact other fields in which magnetized plasmas occur, for instance in astrophysics, inertial-confinement and magnetic-confinement fusion, z-pinch studies, and ion trapping. Graduate and undergraduate students working on this project will be trained in atomic and plasma physics research, research presentation, and peer instruction. Students will also gain experience in the construction and operation of scientific apparatus.
电离气体或等离子体在自然界中普遍存在,例如在闪电、电离层、太阳和许多天体物理环境中。等离子体在气体放电灯、微制造工艺、聚变等离子体、内燃机和霍尔推进器等技术中也很常见。该项目将开发基于原子光谱学的新方法,以监测激光产生的实验室等离子体内部的电场和磁场。这一点很重要,因为众所周知,在不影响粒子分布和场的情况下,监测等离子体场是出了名的困难,特别是对于少量等离子体。这项研究将开创提供非侵入性等离子体诊断的新型量子技术。将研究等离子体中的激波阵面和有序结构,以及磁场对等离子体动力学的影响。由于等离子体在技术上的重要性,这样的等离子体物理研究推动了经济竞争力和繁荣、国防、空间探索和通信的进步。它还促进了基础等离子体科学和天体物理学的进步。参与该项目的学生将接受培训,帮助他们为在科学、工业和教育领域的职业生涯做准备。这项研究是关于通过激光诱导原子蒸气的光致电离而获得的小尺度、磁化的、潜在的强耦合的等离子体。将同时使用捕获原子和常温碱原子蒸汽室。随着光生等离子体的膨胀,它们形成激波阵面,在离子和电子之间的耦合足够强的情况下,等离子体有望发展出与晶体状有序的关联。这个项目将开创一种新的方法来对等离子体中的膨胀、激波阵面和有序结构进行位置和时间分辨测量。将利用里德堡原子的激光光谱学和电磁诱导透明(EIT)开发一种诊断方法。等离子体中的电场将通过里德伯格-EIT光谱分析来绘制。另一种诊断将使用微通道板来计数在可变延迟后从血浆中提取的颗粒。使用嵌入在等离子体中的场敏感里德堡态示踪原子作为等离子体中宏观和随机(Holtsmark)电场的全光学诊断可能会影响发生磁化等离子体的其他领域,例如在天体物理、惯性约束和磁约束聚变、Z-Pinch研究和离子捕获方面。从事这个项目的研究生和本科生将接受原子和等离子体物理研究、研究报告和同行指导方面的培训。学生还将获得科学仪器的建造和操作方面的经验。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Electromagnetically induced transparency, absorption, and microwave-field sensing in a Rb vapor cell with a three-color all-infrared laser system
  • DOI:
    10.1103/physreva.100.063427
  • 发表时间:
    2019-05
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    N. Thaicharoen;K. Moore;Dave Anderson;R. Powel;Eric L. Peterson;G. Raithel
  • 通讯作者:
    N. Thaicharoen;K. Moore;Dave Anderson;R. Powel;Eric L. Peterson;G. Raithel
Coulomb expansion of a cold non-neutral rubidium plasma
  • DOI:
    10.1103/physreva.102.033303
  • 发表时间:
    2020-05
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    M. Viray;Stephanie A. Miller;G. Raithel
  • 通讯作者:
    M. Viray;Stephanie A. Miller;G. Raithel
Magneto-Optical Trap with Millimeter Ball Lenses
  • DOI:
    10.1103/physrevapplied.14.044013
  • 发表时间:
    2020-10-09
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Nichols, Cainan S.;Nofs, Leo M.;Raithel, Georg
  • 通讯作者:
    Raithel, Georg
Measurement of dc and ac Electric Fields inside an Atomic Vapor Cell with Wall-Integrated Electrodes
  • DOI:
    10.1103/physrevapplied.18.024001
  • 发表时间:
    2021-06
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Lu Ma;M. Viray;D. Anderson;G. Raithel
  • 通讯作者:
    Lu Ma;M. Viray;D. Anderson;G. Raithel
Photoionization of nS and nD Rydberg atoms of Rb and Cs from the near-infrared to the ultraviolet spectral region
  • DOI:
    10.1088/1367-2630/ac00d5
  • 发表时间:
    2021-01
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    M. Viray;E. Paradis;G. Raithel
  • 通讯作者:
    M. Viray;E. Paradis;G. Raithel
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Georg Raithel其他文献

Cesium nDJ + 6S1/2 Rydberg molecules and their permanent electric dipole moments
铯 nD J​​ 6S 1/2 Rydberg 分子及其永久电偶极矩
  • DOI:
    10.1103/physrevresearch.2.033525
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    4.2
  • 作者:
    Suying Bai;Xiaoxuan Han;Jingxu Bai;Yuechun Jiao;Jianming Zhao;Suotang Jia;Georg Raithel
  • 通讯作者:
    Georg Raithel
Transition from electromagnetically induced transparency to Autler–Townes splitting in cold cesium atoms
  • DOI:
    doi.org/10.1088/1367-2630/aad153
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
  • 作者:
    Liping Hao;Yuechun Jiao;Yongmei Xue;Xiaoxuan Han;Suying Bai;Jianming Zhao;Georg Raithel
  • 通讯作者:
    Georg Raithel

Georg Raithel的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Georg Raithel', 18)}}的其他基金

Spectroscopy and Quantum-State Manipulation of Excited Rb Atoms and Molecules Using Optical Lattices
使用光学晶格对激发的 Rb 原子和分子进行光谱学和量子态操纵
  • 批准号:
    2110049
  • 财政年份:
    2021
  • 资助金额:
    $ 55.83万
  • 项目类别:
    Continuing Grant
Quantum Dynamics of Rydberg Atoms in Molecules and in Optical Lattices
分子和光学晶格中里德伯原子的量子动力学
  • 批准号:
    1806809
  • 财政年份:
    2018
  • 资助金额:
    $ 55.83万
  • 项目类别:
    Continuing Grant
I-Corps: Atomic High Magnetic Field Sensors
I-Corps:原子强磁场传感器
  • 批准号:
    1624368
  • 财政年份:
    2016
  • 资助金额:
    $ 55.83万
  • 项目类别:
    Standard Grant
Spectroscopy of Rydberg Atoms in Optical Lattices and Laser Traps
光学晶格和激光阱中里德伯原子的光谱学
  • 批准号:
    1506093
  • 财政年份:
    2015
  • 资助金额:
    $ 55.83万
  • 项目类别:
    Standard Grant
Rydberg-Atom Physics in Ponderomotive Traps and Atomic Imaging Devices
有质动力陷阱和原子成像装置中的里德伯原子物理学
  • 批准号:
    1205559
  • 财政年份:
    2012
  • 资助金额:
    $ 55.83万
  • 项目类别:
    Continuing Grant
Many-body Rydberg systems
多体里德伯系统
  • 批准号:
    0855871
  • 财政年份:
    2009
  • 资助金额:
    $ 55.83万
  • 项目类别:
    Continuing Grant
Interactions of cold atoms in Rydberg states.
里德伯态中冷原子的相互作用。
  • 批准号:
    0555520
  • 财政年份:
    2006
  • 资助金额:
    $ 55.83万
  • 项目类别:
    Continuing Grant
Cold Rydberg Atoms
冷里德伯原子
  • 批准号:
    0245532
  • 财政年份:
    2003
  • 资助金额:
    $ 55.83万
  • 项目类别:
    Continuing Grant
"FOCUS: Frontiers in Optical Coherent and Ultrafast Science"
“焦点:光学相干和超快科学的前沿”
  • 批准号:
    0114336
  • 财政年份:
    2001
  • 资助金额:
    $ 55.83万
  • 项目类别:
    Cooperative Agreement
CAREER: Traps for Rydberg Atoms
职业:里德伯原子的陷阱
  • 批准号:
    9875553
  • 财政年份:
    1999
  • 资助金额:
    $ 55.83万
  • 项目类别:
    Continuing Grant

相似国自然基金

Probing matter-antimatter asymmetry with the muon electric dipole moment
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    30 万元
  • 项目类别:

相似海外基金

CAREER: Alternating Current Electrophoresis in Spatially Non-Uniform Electric Fields
职业:空间不均匀电场中的交流电泳
  • 批准号:
    2340925
  • 财政年份:
    2024
  • 资助金额:
    $ 55.83万
  • 项目类别:
    Continuing Grant
Interference effects caused by multiple scattering of the near-infrared electric fields in super-concentrated solutions
超浓溶液中近红外电场多次散射引起的干扰效应
  • 批准号:
    22KK0243
  • 财政年份:
    2023
  • 资助金额:
    $ 55.83万
  • 项目类别:
    Fund for the Promotion of Joint International Research (Fostering Joint International Research (A))
Collaborative Research: Elucidating the Roles of Electric Fields Within Mixed Ionic and Electronic Conducting Oxides Under Electrochemical Reducing Conditions
合作研究:阐明电化学还原条件下混合离子和电子导电氧化物中电场的作用
  • 批准号:
    2333166
  • 财政年份:
    2023
  • 资助金额:
    $ 55.83万
  • 项目类别:
    Continuing Grant
EAGER: Increased Service Life of Sustainable Cements via Electric Fields
EAGER:通过电场延长可持续水泥的使用寿命
  • 批准号:
    2243059
  • 财政年份:
    2023
  • 资助金额:
    $ 55.83万
  • 项目类别:
    Standard Grant
CAREER: Simultaneous and Independent Control of Nanostructured Objects Through the Use of Coupled External Electric Fields
职业:通过使用耦合外部电场同时独立控制纳米结构物体
  • 批准号:
    2146056
  • 财政年份:
    2022
  • 资助金额:
    $ 55.83万
  • 项目类别:
    Standard Grant
PFI-TT: Point-of-Care Sensor Based on Electric Fields and Machine Learning for the Detection of Circulating MicroRNA to Identify Early Stage Pancreatic Cancer
PFI-TT:基于电场和机器学习的即时护理传感器,用于检测循环 MicroRNA 以识别早期胰腺癌
  • 批准号:
    2300064
  • 财政年份:
    2022
  • 资助金额:
    $ 55.83万
  • 项目类别:
    Standard Grant
How electric fields can facilitate reversible protein binding to surfaces
电场如何促进可逆蛋白质与表面的结合
  • 批准号:
    DP220103024
  • 财政年份:
    2022
  • 资助金额:
    $ 55.83万
  • 项目类别:
    Discovery Projects
Targeted Neuromodulation by Nanosecond Pulsed Electric Fields
纳秒脉冲电场的靶向神经调节
  • 批准号:
    10669767
  • 财政年份:
    2022
  • 资助金额:
    $ 55.83万
  • 项目类别:
Tumour Treating Electric Fields for Non-invasive Treatment of Brain Cancer
肿瘤治疗电场用于无创治疗脑癌
  • 批准号:
    2641362
  • 财政年份:
    2022
  • 资助金额:
    $ 55.83万
  • 项目类别:
    Studentship
PFI-TT: Point-of-Care Sensor Based on Electric Fields and Machine Learning for the Detection of Circulating MicroRNA to Identify Early Stage Pancreatic Cancer
PFI-TT:基于电场和机器学习的即时护理传感器,用于检测循环 MicroRNA 以识别早期胰腺癌
  • 批准号:
    2213760
  • 财政年份:
    2022
  • 资助金额:
    $ 55.83万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了