I-Corps: Atomic High Magnetic Field Sensors

I-Corps:原子强磁场传感器

基本信息

项目摘要

The pursued technology is based on a measurement approach that utilizes vapor cells containing atoms in highly excited states (Rydberg states) that function as sensors for strong magnetic fields. Key features of the atomic high magnetic field sensor are: (1) since the invariable response of atoms is used for the field detection, the operation of these sensors is intrinsically calibration- and drift-free, (2) the sensors exhibit high precision and a large measurement range, (3) metallic components that may be problematic with sensing magnetic fields are not present in the sensor head (all-optical signal readout), (4) the sensors have high-spatial-resolution imaging capability, and (5) the sensors are immune to electromagnetic interference (EMI) effects. High magnetic fields in the range of 1-100 Tesla are becoming increasingly important in science and engineering settings. There is growing demand for such fields at university laboratories and government-funded research facilities around the world, and for use in improved industrial processing techniques. In medicine, strong magnets continue to drive improvements in magnetic resonance imaging (MRI) products and systems. Advances in high-magnetic-field science and applications continue to benefit directly from improvements in the detection and control of strong magnetic fields, driving demand for devices capable of sensing and measurement in different high-magnetic-field environments with ever-more stringent requirements on the device?s performance capabilities. It is planned to develop a high-magnetic-field sensor with a sensor head that is electrode-free, metal-free, and based on atomic spectroscopy. The response of the Rydberg atoms to the fields to be measured is detected using electromagnetically induced transparency (EIT), a quantum-optics method that allows all-optical measurements of Rydberg energy levels without need for vacuum systems and particle detectors. Much of the infrastructure required for measuring strong magnetic fields using Rydberg-atom EIT (lasers, electronics, data acquisition and processing) is already present in the laboratory from previous work. The team has already prepared a setup consisting of strong permanent magnets (field about one Tesla) surrounding the spectroscopic cell. The testing will include the useful field range, the resolution and accuracy, and the detection bandwidth. It is planned to perform one or two test runs within a strong superconducting magnet that can provide 6 to 9 Tesla of magnetic field. The team believes that the sensor technology to be developed can have distinct competitive advantages over current sensors on the market. The potential contribution of the work to science, scientific applications and eventually to the market is the development of atomic sensors for strong-magnetic-field measurement and imaging applications, with performance characteristics that address limitations of existing high-magnetic-field sensor and measurement technologies. The potential customers include national laboratories with high-magnetic-field capabilities and detection needs, such as particle colliders, plasma physics labs, and the National High Magnetic Field Lab, industrial materials manufacturers, medical MRI research and development centers, and electromagnetic compliance (EMC)/EMI testing laboratories in the aerospace, automotive, and defense industries.
所追求的技术是基于一种测量方法,该方法利用含有处于高激发态(里德伯态)的原子的蒸汽单元,这些原子用作强磁场的传感器。原子强磁场传感器的主要特点是:(1)由于原子的不变响应被用于场检测,因此这些传感器的操作本质上是无校准和无漂移的,(2)传感器表现出高精度和大测量范围,(3)在传感器头中不存在感测磁场可能有问题的金属部件(全光学信号读出),(4)传感器具有高空间分辨率成像能力,以及(5)传感器不受电磁干扰(EMI)影响。 1-100特斯拉范围内的高磁场在科学和工程环境中变得越来越重要。世界各地的大学实验室和政府资助的研究设施对这种场的需求日益增长,并用于改进工业加工技术。在医学领域,强磁体继续推动磁共振成像(MRI)产品和系统的改进。 高磁场科学和应用的进步继续直接受益于强磁场检测和控制的改进,推动了对能够在不同高磁场环境中进行传感和测量的设备的需求,对设备的要求越来越严格。的性能。计划开发具有无电极、无金属、基于原子光谱的传感器头的高磁场传感器。里德伯原子对待测场的响应是使用电磁感应透明(EIT)检测的,EIT是一种量子光学方法,可以在不需要真空系统和粒子探测器的情况下对里德伯能级进行全光学测量。使用里德伯原子EIT(激光,电子,数据采集和处理)测量强磁场所需的大部分基础设施已经存在于实验室中。该团队已经准备好了一个由围绕光谱池的强永磁体(磁场约为1特斯拉)组成的装置。测试将包括有效视场范围、分辨率和准确度以及探测带宽。计划在可提供6至9特斯拉磁场的强超导磁体内进行一次或两次测试。 该团队认为,与市场上现有的传感器相比,即将开发的传感器技术具有明显的竞争优势。这项工作对科学、科学应用以及最终对市场的潜在贡献是开发用于强磁场测量和成像应用的原子传感器,其性能特征可以解决现有强磁场传感器和测量技术的局限性。潜在客户包括具有高磁场能力和检测需求的国家实验室,如粒子对撞机,等离子体物理实验室和国家高磁场实验室,工业材料制造商,医疗MRI研发中心以及航空航天,汽车和国防行业的电磁兼容性(EMC)/EMI测试实验室。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Georg Raithel其他文献

Cesium nDJ + 6S1/2 Rydberg molecules and their permanent electric dipole moments
铯 nD J​​ 6S 1/2 Rydberg 分子及其永久电偶极矩
  • DOI:
    10.1103/physrevresearch.2.033525
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    4.2
  • 作者:
    Suying Bai;Xiaoxuan Han;Jingxu Bai;Yuechun Jiao;Jianming Zhao;Suotang Jia;Georg Raithel
  • 通讯作者:
    Georg Raithel
Transition from electromagnetically induced transparency to Autler–Townes splitting in cold cesium atoms
  • DOI:
    doi.org/10.1088/1367-2630/aad153
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
  • 作者:
    Liping Hao;Yuechun Jiao;Yongmei Xue;Xiaoxuan Han;Suying Bai;Jianming Zhao;Georg Raithel
  • 通讯作者:
    Georg Raithel

Georg Raithel的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Georg Raithel', 18)}}的其他基金

Spectroscopy and Quantum-State Manipulation of Excited Rb Atoms and Molecules Using Optical Lattices
使用光学晶格对激发的 Rb 原子和分子进行光谱学和量子态操纵
  • 批准号:
    2110049
  • 财政年份:
    2021
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
Quantum Dynamics of Rydberg Atoms in Molecules and in Optical Lattices
分子和光学晶格中里德伯原子的量子动力学
  • 批准号:
    1806809
  • 财政年份:
    2018
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
Structures and Electric Fields in Laser-Induced Magnetized Plasmas
激光诱导磁化等离子体中的结构和电场
  • 批准号:
    1707377
  • 财政年份:
    2017
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
Spectroscopy of Rydberg Atoms in Optical Lattices and Laser Traps
光学晶格和激光阱中里德伯原子的光谱学
  • 批准号:
    1506093
  • 财政年份:
    2015
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Rydberg-Atom Physics in Ponderomotive Traps and Atomic Imaging Devices
有质动力陷阱和原子成像装置中的里德伯原子物理学
  • 批准号:
    1205559
  • 财政年份:
    2012
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
Many-body Rydberg systems
多体里德伯系统
  • 批准号:
    0855871
  • 财政年份:
    2009
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
Interactions of cold atoms in Rydberg states.
里德伯态中冷原子的相互作用。
  • 批准号:
    0555520
  • 财政年份:
    2006
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
Cold Rydberg Atoms
冷里德伯原子
  • 批准号:
    0245532
  • 财政年份:
    2003
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
"FOCUS: Frontiers in Optical Coherent and Ultrafast Science"
“焦点:光学相干和超快科学的前沿”
  • 批准号:
    0114336
  • 财政年份:
    2001
  • 资助金额:
    $ 5万
  • 项目类别:
    Cooperative Agreement
CAREER: Traps for Rydberg Atoms
职业:里德伯原子的陷阱
  • 批准号:
    9875553
  • 财政年份:
    1999
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant

相似海外基金

Atomic sensors for dark matter, rotation and magnetic fields
用于暗物质、旋转和磁场的原子传感器
  • 批准号:
    DP240100534
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Discovery Projects
Cross-correlated optical responses of magnetic excitons in atomic-layer magnetoelectrics
原子层磁电中磁激子的互相关光学响应
  • 批准号:
    24K17019
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Spectroscopic Detection of Magnetic Scattering and Quasiparticles at Atomic Resolution in the Electron Microscope
电子显微镜中原子分辨率的磁散射和准粒子的光谱检测
  • 批准号:
    EP/Z531194/1
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Research Grant
Magnetic imaging by the locally induced anomalous Nernst effect using atomic force microscopy
使用原子力显微镜通过局部诱发的异常能斯特效应进行磁成像
  • 批准号:
    23K04579
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Magnetic fields and atomic gas flows in the Milky Way and Magellanic Clouds
银河系和麦哲伦云中的磁场和原子气体流
  • 批准号:
    DP220101558
  • 财政年份:
    2022
  • 资助金额:
    $ 5万
  • 项目类别:
    Discovery Projects
Non-cryogenic Fieldable Interleaved Magnetoencephalography and Magnetic Resonance Imaging based on Multichannel Atomic Magnetometers
基于多通道原子磁强计的非低温现场交错脑磁图和磁共振成像
  • 批准号:
    10596209
  • 财政年份:
    2022
  • 资助金额:
    $ 5万
  • 项目类别:
MRI: Acquisition of a Monochromated, Magnetic-Field-Free, Atomic-Resolution Scanning Transmission Electron Microscope Enabling Multidisciplinary Research and Education
MRI:获取单色、无磁场、原子分辨率扫描透射电子显微镜,实现多学科研究和教育
  • 批准号:
    2215976
  • 财政年份:
    2022
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Collaborative Research: Tackling Functional Protein States at Atomic Detail by Integrating Weighted Ensemble Simulations with Magnetic Resonance Restraints
合作研究:通过将加权集成模拟与磁共振约束相结合来解决原子细节上的功能蛋白质状态
  • 批准号:
    2112872
  • 财政年份:
    2021
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Collaborative Research: Tackling Functional Protein States at Atomic Detail by Integrating Weighted Ensemble Simulations with Magnetic Resonance Restraints
合作研究:通过将加权集成模拟与磁共振约束相结合来解决原子细节上的功能蛋白质状态
  • 批准号:
    2112871
  • 财政年份:
    2021
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Elucidation of plasma-assisted atomic layer etching (ALE) mechanism for magnetic materials using organic gas
使用有机气体阐明磁性材料的等离子体辅助原子层蚀刻(ALE)机制
  • 批准号:
    20J10393
  • 财政年份:
    2020
  • 资助金额:
    $ 5万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了