Statistical Methodology for Stochastic Systems with Parameters Jumps and Applications to Economics, Genetics and Engineering

参数跳跃随机系统的统计方法及其在经济学、遗传学和工程学中的应用

基本信息

  • 批准号:
    1206321
  • 负责人:
  • 金额:
    $ 18.43万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-09-01 至 2016-08-31
  • 项目状态:
    已结题

项目摘要

Statistical inference problems in complex stochastic systems with parameter jumps arise in science and engineering, including economics, finance, genetics, industrial quality control, and public health. An important ingredient in the solution to these problems is efficient estimation of time-varying parameters with unknown jumps. In the proposed research, the investigator studies some newly emerged stochastic models with unknown parameter jumps in different disciplines and develops the related inference procedure. In particular, four types of problems in different areas are studied in the proposal. The first investigates a semi-parametric change-point regression model and its inference procedure for abrupt changes of covariate effect in longitudinal studies. The second develops a credit rating transition model in the presence of unknown structural breaks and an estimation procedure for the analysis of the relationship between the structural breaks in the U.S. credit market and macroeconomic and firm-specific covariates. The third considers a class of Markov switching models with stochastic regimes and their applications in economic analysis of business cycles and recurrent copy number variation analysis in genomic studies. The fourth problem discusses surveillance rules in sequential surveillance problems and their applications in risk management. The investigator will show how these challenging problems in different areas can be unified and solved by the developed statistical models and inference procedures. Complex stochastic systems with unknown parameter jumps are often encountered in various scientific and engineering practices including economics, finance, biology, risk management and control. While systems with smoothly changing parameters have been discussed intensively in the literature, recent advances in natural and social sciences show the growing importance of stochastic systems with unknown parameter jumps. In current genomic research, DNA copy number variations are key genetic events in the development and progression of numerous diseases including cancer, HIV acquisition, and Alzheimer and Parkinson's disease, and an important step in studying these genetic events is to identify the regions of variations. In economic studies, the authorities are keen to have a more detailed and quantitative characterization of the real economic states, instead of some simple descriptions such as booming or recession that are commonly discussed in the economic literature, so that proper monetary and fiscal policies can be issued. In financial studies, the 2008-2009 financial crisis raises the immediate needs for the regulatory authorities that the credit market and banking systems should be regulated and monitored based on solid statistical and econometric models and procedures, and hence an early warning system should be established to surveillance the stability of financial and economic systems. The proposed research is one of the first attempts to explore the possibility of building quantitative and implementable early-warning systems for financial markets and economic activities, which aggregates microeconomic information among individual firms and banks and macroeconomic statistics from general economic activities.
具有参数跳跃的复杂随机系统中的统计推理问题出现在科学和工程领域,包括经济学、金融学、遗传学、工业质量控制和公共卫生。解决这些问题的一个重要因素是有效估计带有未知跳变的时变参数。在本研究中,研究者研究了不同学科中新出现的具有未知参数跳跃的随机模型,并开发了相关的推理程序。具体而言,建议研究了不同领域的四类问题。第一部分研究了纵向研究中协变量效应突变的半参数变点回归模型及其推理过程。第二部分发展了一个存在未知结构性断裂的信用评级过渡模型,以及一个用于分析美国信贷市场结构性断裂与宏观经济和企业特定协变量之间关系的估计程序。第三章考虑了一类具有随机机制的马尔可夫切换模型及其在经济周期的经济分析和基因组研究中的重复拷贝数变异分析中的应用。第四个问题讨论了序列监视问题中的监视规则及其在风险管理中的应用。研究者将展示如何通过发展的统计模型和推理程序来统一和解决不同领域的这些具有挑战性的问题。在经济、金融、生物学、风险管理和控制等科学和工程实践中,经常会遇到具有未知参数跳跃的复杂随机系统。虽然具有平稳变化参数的系统已经在文献中得到了深入的讨论,但自然科学和社会科学的最新进展表明具有未知参数跳跃的随机系统越来越重要。在当前的基因组研究中,DNA拷贝数变异是癌症、HIV获取、阿尔茨海默病和帕金森病等多种疾病发生发展的关键遗传事件,而确定变异区域是研究这些遗传事件的重要步骤。在经济研究中,当局热衷于对实体经济状态进行更详细和定量的描述,而不是像经济文献中经常讨论的那样,对经济繁荣或衰退进行一些简单的描述,以便出台适当的货币和财政政策。在金融研究中,2008-2009年的金融危机向监管当局提出了迫切的需求,即信贷市场和银行体系应该基于可靠的统计和计量模型和程序进行监管和监测,因此应该建立一个早期预警系统,以监测金融和经济体系的稳定性。拟议的研究是探索为金融市场和经济活动建立数量和可执行的早期预警系统的可能性的第一次尝试之一,该系统汇集了个别公司和银行的微观经济资料以及一般经济活动的宏观经济统计数据。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Haipeng Xing其他文献

Dependence of Structural Breaks in Rating Transition Dynamics on Economic and Market Variations
评级转型动态中的结构性突破对经济和市场变化的依赖性
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Haipeng Xing;Ying Chen
  • 通讯作者:
    Ying Chen
Stochastic Change-Point Models of Asset Returns and Their Volatilities
资产收益及其波动性的随机变点模型
  • DOI:
    10.1007/978-1-4614-7750-1_85
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    T. Lai;Haipeng Xing
  • 通讯作者:
    Haipeng Xing
A Mixtured Localized Likelihood Method for GARCH Models with Multiple Change-points
多变点GARCH模型的混合局部似然法
Nonparametric functionals of spectral distributions and their applications to time series analysis
谱分布的非参数泛函及其在时间序列分析中的应用
  • DOI:
    10.1016/j.jspi.2006.06.025
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    T. Lai;Haipeng Xing
  • 通讯作者:
    Haipeng Xing
Firm’s credit risk and the risk of structural breaks in financial market
公司信用风险和金融市场结构性破裂的风险
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Haipeng Xing;Yang Yu
  • 通讯作者:
    Yang Yu

Haipeng Xing的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Haipeng Xing', 18)}}的其他基金

Abrupt Structural Changes in Complex Stochastic Systems with Applications to Economics, Finance, and Genetics
复杂随机系统的突变结构变化及其在经济学、金融学和遗传学中的应用
  • 批准号:
    1612501
  • 财政年份:
    2016
  • 资助金额:
    $ 18.43万
  • 项目类别:
    Standard Grant
Collaborative Research: Perfect Simulation of Stochastic Networks
合作研究:随机网络的完美模拟
  • 批准号:
    1538102
  • 财政年份:
    2015
  • 资助金额:
    $ 18.43万
  • 项目类别:
    Standard Grant
Estimation, Detection and Control of Multiple Change-point Stochastic Systems with Applications to Economics, Engineering, Biology and Climate Science
多变点随机系统的估计、检测和控制及其在经济学、工程、生物学和气候科学中的应用
  • 批准号:
    0906593
  • 财政年份:
    2009
  • 资助金额:
    $ 18.43万
  • 项目类别:
    Standard Grant

相似海外基金

Stochastic Models and Statistical Methodology for Marked Spatio-Temporal Point Processes with Applications to Wildland Fire Management
标记时空点过程的随机模型和统计方法及其在荒地火灾管理中的应用
  • 批准号:
    RGPIN-2015-04221
  • 财政年份:
    2019
  • 资助金额:
    $ 18.43万
  • 项目类别:
    Discovery Grants Program - Individual
Stochastic Models and Statistical Methodology for Marked Spatio-Temporal Point Processes with Applications to Wildland Fire Management
标记时空点过程的随机模型和统计方法及其在荒地火灾管理中的应用
  • 批准号:
    RGPIN-2015-04221
  • 财政年份:
    2018
  • 资助金额:
    $ 18.43万
  • 项目类别:
    Discovery Grants Program - Individual
Hybrid Deterministic-Stochastic Methodology for Simulating Spatial Evolution in Large Populations
用于模拟大群体空间演化的混合确定性-随机方法
  • 批准号:
    1815406
  • 财政年份:
    2018
  • 资助金额:
    $ 18.43万
  • 项目类别:
    Standard Grant
Collaborative Stochastic Deterioration Modelling Methodology for Infrastructure Renewal Planning in Small to Medium Municipalities
中小型城市基础设施更新规划的协作随机恶化建模方法
  • 批准号:
    530686-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 18.43万
  • 项目类别:
    Engage Plus Grants Program
CAREER: A Path Integral Methodology for Accurate and Computationally Efficient Stochastic Analysis of Diverse Dynamical Systems
职业生涯:用于对不同动力系统进行精确且计算高效的随机分析的路径积分方法
  • 批准号:
    1748537
  • 财政年份:
    2018
  • 资助金额:
    $ 18.43万
  • 项目类别:
    Standard Grant
Stochastic Models and Statistical Methodology for Marked Spatio-Temporal Point Processes with Applications to Wildland Fire Management
标记时空点过程的随机模型和统计方法及其在荒地火灾管理中的应用
  • 批准号:
    RGPIN-2015-04221
  • 财政年份:
    2017
  • 资助金额:
    $ 18.43万
  • 项目类别:
    Discovery Grants Program - Individual
Study of defect generation processes in nano-scale devices and the deign methodology based on stochastic theory
基于随机理论的纳米器件缺陷产生过程及设计方法研究
  • 批准号:
    16K14405
  • 财政年份:
    2016
  • 资助金额:
    $ 18.43万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Stochastic Models and Statistical Methodology for Marked Spatio-Temporal Point Processes with Applications to Wildland Fire Management
标记时空点过程的随机模型和统计方法及其在荒地火灾管理中的应用
  • 批准号:
    RGPIN-2015-04221
  • 财政年份:
    2016
  • 资助金额:
    $ 18.43万
  • 项目类别:
    Discovery Grants Program - Individual
Bayesian Non-Parametric Methodology for Stochastic Epidemic Models
随机流行病模型的贝叶斯非参数方法
  • 批准号:
    1800036
  • 财政年份:
    2016
  • 资助金额:
    $ 18.43万
  • 项目类别:
    Studentship
Stochastic Models and Statistical Methodology for Marked Spatio-Temporal Point Processes with Applications to Wildland Fire Management
标记时空点过程的随机模型和统计方法及其在荒地火灾管理中的应用
  • 批准号:
    RGPIN-2015-04221
  • 财政年份:
    2015
  • 资助金额:
    $ 18.43万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了