Entropy in Mean Curvature Flow and Minimal Hypersurfaces
平均曲率流和最小超曲面中的熵
基本信息
- 批准号:2105576
- 负责人:
- 金额:$ 36.44万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2021-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Mean curvature flow is a process that evolves hypersurfaces in an ambient space so that the area of the hypersurfaces decreases in the steepest direction. A minimal hypersurface is a hypersurface that locally minimizes the area, and it is a stationary solution to mean curvature flow. In addition to being beautiful subjects in themselves, mean curvature flow and minimal hypersurfaces arise as simplified models for various physical processes that involve surface tension, and they could be applied to questions in other scientific fields, such as materials science and computer vision. The project aims to exploit suitable notions of entropy to study global features of mean curvature flow and minimal hypersurfaces. Significant educational activities that are integrated into the project include: mentoring undergraduate and graduate students and postdocs on some questions in the project; recruiting women and other underrepresented groups; teaching mini-courses to attract young students to the field; and organizing seminars, workshops and research programs promoting young scholars.The project has three parts. The first concerns quantitative understanding of resolutions of conical singularities of mean curvature flow and its application to the higher homotopy group of the space of closed hypersurfaces in Euclidean space of low entropy. The second is to develop a Morse theory for self-expanding solutions to mean curvature flow. The last is to study geometric and topological properties of minimal hypersurfaces in sphere and hyperbolic space.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
平均曲率流是超曲面在周围空间中演化的过程,使得超曲面的面积在最陡的方向上减小。极小超曲面是局部极小化面积的超曲面,它是平均曲率流的稳态解。除了本身是美丽的主题之外,平均曲率流和最小超曲面作为涉及表面张力的各种物理过程的简化模型而出现,并且它们可以应用于其他科学领域的问题,例如材料科学和计算机视觉。该项目旨在利用适当的熵的概念来研究平均曲率流和极小超曲面的全局特征。纳入该项目的重要教育活动包括:就项目中的一些问题对本科生、研究生和博士后进行辅导;招募妇女和其他代表性不足的群体;教授小型课程以吸引年轻学生到该领域;组织研讨会、讲习班和研究方案,促进年轻学者。第一个是关于平均曲率流的圆锥奇点的解析的定量理解及其在低熵欧氏空间中闭超曲面空间的高阶同伦群中的应用。第二是发展了平均曲率流自膨胀解的莫尔斯理论。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lu Wang其他文献
REGγ controls Th17 cell differentiation and autoimmune inflammation by regulating dendritic cells
REGγ 通过调节树突状细胞来控制 Th17 细胞分化和自身免疫炎症
- DOI:
10.1038/s41423-019-0287-0 - 发表时间:
2019-09 - 期刊:
- 影响因子:24.1
- 作者:
Lei Zhou;Liangfang Yao;Qing Zhang;Wei Xie;Xiaoshuang Wang;Huihui Zhang;Jinjin Xu;Qingxia Lin;Qing Li;Yang Xuan;Lei Ji;Lu Wang;Weicang Wang;Weichao Wang;Tingting Shi;Lei Fang;Biao Zheng;Lei Li;Shuang Liu;Bianhong Zhang;Xiaotao Li - 通讯作者:
Xiaotao Li
Microstructure and thermal conductivity of wire-arc sprayed FeCrNbBSiC amorphous coating
线弧喷涂FeCrNbBSiC非晶涂层的显微组织与导热系数
- DOI:
10.1016/j.jallcom.2019.02.275 - 发表时间:
2019-06 - 期刊:
- 影响因子:6.2
- 作者:
Haihua Yao;Zheng Zhou;Yunfei Xue;zhenlu Zhou;Zhen Tan;Dingyong He;Benpeng Wang;Lu Wang - 通讯作者:
Lu Wang
Identification of two candidate innate immune genes by transcriptional profiling and RNA interference in mouse mammary gland epithelial cells stimulated with lipopolysaccharide
通过脂多糖刺激的小鼠乳腺上皮细胞中的转录谱和 RNA 干扰鉴定两个候选先天免疫基因
- DOI:
10.1080/08923973.2016.1222618 - 发表时间:
2016-08 - 期刊:
- 影响因子:3.3
- 作者:
Yu-kun Wang;Jiang Feng;Yu-hao Wei;Lu Wang - 通讯作者:
Lu Wang
Metal carbonates-induced solution-free dehydrogenation of alkaline earth metal hydrides at room temperature
金属碳酸盐诱导的碱土金属氢化物室温无溶液脱氢
- DOI:
10.1016/j.jssc.2020.121485 - 发表时间:
2020-09 - 期刊:
- 影响因子:3.3
- 作者:
Song Zhang;Lu Wang;Yun-Long Tai;Yun-Lei Teng;Juan Zhao;Wei Zhu;Bao-Xia Dong - 通讯作者:
Bao-Xia Dong
Protective Effect of Ginsenoside Rg1 on Hematopoietic Stem/Progenitor Cells through Attenuating Oxidative Stress and the Wnt/-Catenin Signaling Pathway in a Mouse Model of D-Galactose-induced Aging
人参皂苷 Rg1 通过减轻 D-半乳糖诱导衰老小鼠模型中的氧化应激和 Wnt/-Catenin 信号通路对造血干细胞/祖细胞的保护作用
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:5.6
- 作者:
Jing Li;Dachuan Cai;Xin Yao;Yanyan Zhang;Linbo Chen;Pengwei Jing;Lu Wang;Yaping Wang - 通讯作者:
Yaping Wang
Lu Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lu Wang', 18)}}的其他基金
Conference: Doctoral Consortium at Student Research Workshop at the Annual Meeting of the Association for Computational Linguistics
会议:计算语言学协会年会学生研究研讨会上的博士联盟
- 批准号:
2307288 - 财政年份:2023
- 资助金额:
$ 36.44万 - 项目类别:
Standard Grant
Argument Graph Supported Multi-Level Approach for Argumentative Writing Assistance
论证图支持多层次的议论文写作辅助方法
- 批准号:
2302564 - 财政年份:2023
- 资助金额:
$ 36.44万 - 项目类别:
Standard Grant
CRII:SCH: Interactive Explainable Deep Survival Analysis
CRII:SCH:交互式可解释深度生存分析
- 批准号:
2245739 - 财政年份:2023
- 资助金额:
$ 36.44万 - 项目类别:
Standard Grant
Collaborative Research: From User Reviews to User-Centered Generative Design: Automated Methods for Augmented Designer Performance
协作研究:从用户评论到以用户为中心的生成设计:增强设计师性能的自动化方法
- 批准号:
2050130 - 财政年份:2021
- 资助金额:
$ 36.44万 - 项目类别:
Standard Grant
CAREER: Long Document Summarization with Question-Summary Hierarchy and User Preference Control
职业:具有问题摘要层次结构和用户偏好控制的长文档摘要
- 批准号:
2046016 - 财政年份:2021
- 资助金额:
$ 36.44万 - 项目类别:
Continuing Grant
Entropy in Mean Curvature Flow and Minimal Hypersurfaces
平均曲率流和最小超曲面中的熵
- 批准号:
2146997 - 财政年份:2021
- 资助金额:
$ 36.44万 - 项目类别:
Continuing Grant
Collaborative Research: III: Small: Entity- and Event-driven Media Bias Detection
协作研究:III:小型:实体和事件驱动的媒体偏差检测
- 批准号:
2127747 - 财政年份:2021
- 资助金额:
$ 36.44万 - 项目类别:
Standard Grant
Evaluation of Hypothermic Oxygenated Perfusion Ex-Vivo Heart Perfusion to Expand the Donor Pool and Improve Transplant Outcomes
评估低温氧合灌注离体心脏灌注以扩大供体库并改善移植结果
- 批准号:
MR/V002074/1 - 财政年份:2020
- 资助金额:
$ 36.44万 - 项目类别:
Fellowship
RI: Small: Collaborative Research: Computational Methods for Argument Mining: Extraction, Aggregation, and Generation
RI:小型:协作研究:参数挖掘的计算方法:提取、聚合和生成
- 批准号:
2100885 - 财政年份:2020
- 资助金额:
$ 36.44万 - 项目类别:
Standard Grant
相似国自然基金
Graphon mean field games with partial observation and application to failure detection in distributed systems
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Canonical mean curvature flow and its application to evolution problems
正则平均曲率流及其在演化问题中的应用
- 批准号:
23H00085 - 财政年份:2023
- 资助金额:
$ 36.44万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Toward applications of the crystalline mean curvature flow
晶体平均曲率流的应用
- 批准号:
23K03212 - 财政年份:2023
- 资助金额:
$ 36.44万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Geometric analysis of mean curvature flow with dynamic contact angle structure
动态接触角结构平均曲率流动的几何分析
- 批准号:
23K12992 - 财政年份:2023
- 资助金额:
$ 36.44万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Construction of constant mean curvature surfaces via loop groups and Lorentz geometry
通过环群和洛伦兹几何构造恒定平均曲率曲面
- 批准号:
23K03081 - 财政年份:2023
- 资助金额:
$ 36.44万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Singularities of Minimal Hypersurfaces and Lagrangian Mean Curvature Flow
最小超曲面的奇异性和拉格朗日平均曲率流
- 批准号:
2306233 - 财政年份:2023
- 资助金额:
$ 36.44万 - 项目类别:
Continuing Grant
Mean curvature flow of small sections of the tangent bundle
切束小截面的平均曲率流
- 批准号:
572922-2022 - 财政年份:2022
- 资助金额:
$ 36.44万 - 项目类别:
University Undergraduate Student Research Awards
The Morse index, topology and geometry of branched constant mean curvature surfaces.
分支常平均曲率表面的莫尔斯指数、拓扑和几何。
- 批准号:
2758306 - 财政年份:2022
- 资助金额:
$ 36.44万 - 项目类别:
Studentship
Mean Curvature Flow and Singular Minimal Surfaces
平均曲率流和奇异极小曲面
- 批准号:
2203132 - 财政年份:2022
- 资助金额:
$ 36.44万 - 项目类别:
Standard Grant
Singularities of Minimal Hypersurfaces and Lagrangian Mean Curvature Flow
最小超曲面的奇异性和拉格朗日平均曲率流
- 批准号:
2203218 - 财政年份:2022
- 资助金额:
$ 36.44万 - 项目类别:
Continuing Grant
Research of submanifolds by using the mean curvature flow and Lie group actions, and its application to theoretical physics
利用平均曲率流和李群作用研究子流形及其在理论物理中的应用
- 批准号:
22K03300 - 财政年份:2022
- 资助金额:
$ 36.44万 - 项目类别:
Grant-in-Aid for Scientific Research (C)