Collaborative Research: Size Effects on Magneto-Mechanics of Ni-Mn-Ga Fibers

合作研究:Ni-Mn-Ga 纤维磁力学的尺寸效应

基本信息

  • 批准号:
    1207282
  • 负责人:
  • 金额:
    $ 34.71万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-07-15 至 2017-06-30
  • 项目状态:
    已结题

项目摘要

TECHNICAL SUMMARY:This project lays the foundation for a new class of active materials - magnetic shape-memory fibers with tailored geometry, microstructure and magneto-mechanical properties - to be used as transducers for micro-devices and as building blocks for composites or cellular structures. Magnetic-field-induced twinning is responsible for the high magnetoplastic strains achievable in monocrystalline Ni-Mn-Ga. By contrast, polycrystalline Ni-Mn-Ga shows no magnetoplasticity because twinning is inhibited by internal incompatibility stresses developed between adjacent, misoriented grains. The PIs recently discovered that porosity, because it reduces internal stresses, allows twinning to occur in polycrystalline Ni-Mn-Ga foams, resulting in magnetoplastic strains in the foam struts. Applying this concept to individual fibers, our hypothesis is that tailored grain size (with respect to fiber size) and grain orientations will allow tuning the magnetoplastic strain from polycrystalline (0%) to monocrystalline (~10%) behavior.In this basic study, we will develop a fundamental understanding of how fiber geometry and grain microstructure enable magnetic-field-induced strains in polycrystalline Ni-Mn-Ga fibers, leading to experimentally-validated models that can quantitatively predict the magnitude of magnetoplastic strain for a given fiber structure. Fundamental experimental and theoretical studies probing the mechanisms responsible for magnetoplasticity in the fibers will be carried out. First, the fiber geometry will be varied, in terms of cross-sectional shape and diameter, by using two versatile manufacturing methods (Taylor wire drawing and melt extraction). Then, the fiber grain size and texture will be tailored: the ratio of grain to fiber diameter will be varied from 1 (polycrystalline fiber) to ~1 (bamboo structure) and compared to single-crystal fibers; grain orientation will be varied from random to fiber texture. Third, the magneto-mechanical properties of the fibers will be characterized and numerically modeled on two length scales: (i) at a shorter length scale, models based on the mutual interaction of twinning dislocations and dislocation-interface interactions will predict the effect of free surfaces on the constitutive behavior of Ni-Mn-Ga in small volumes; (ii) at larger length scale, finite-element models will predict, based on the constitutive behavior, the magneto-mechanical behavior of an assembly of bamboo grains within a fiber. Collaborators will embed fibers in polymer matrix to create composites to study their magneto-mechanical properties, or create fiber bundles to study their magneto-caloric properties.NON-TECHNICAL SUMMARY:The present project is a coupled experimental-theoretical study of the magneto-mechanics of magnetic shape-memory fibers, a novel class of materials. It focuses on identifying, quantifying and predicting the effects of fiber geometry and grain microstructure upon reduction of internal stresses and the resulting enhancement in magnetoplastic strain, a phenomenon recently demonstrated in struts of foams by the PIs. The results obtained will be general in nature and thus applicable not only to Ni-Mn-Ga but also to the whole class of magnetic shape-memory alloys.Ni-Mn-Ga fibers with tailored grain structures are expected to show large magnetoplastic strain (i.e. they deform when exposed to a variable magnetic field) which are much higher than magnetostrictive material containing strategic rare-earth elements. These Ni-Mn-Ga fibers may be implemented without further processing in smart actuators and may thus grow rapidly in industrial importance, resulting in a transformative effect on various sensor and actuator technologies including bio-medical pumps, ink-jet printer valves, power-generation transducers, and haptics devices. Beyond sensor and actuator applications, fibers and fiber constructs may enable new applications such as efficient magnetic cooling devices with high heat-transfer rates due to their large specific areas. This project will educate two graduate students and several undergraduate students, whose recruitment will emphasize women and minorities. Beside research, the students will participate in various outreach activities using the shape-memory materials to introduce materials science and technology to young women, minorities, and grade school (K-12) students. This project will leverage collaboration with four international partners (in Europe and Asia) thereby generating high visibility and impact. The recent results of the PIs resonated strongly with the scientific community and were highlighted in national media. These contacts will be leveraged for disseminating results of the proposed project. The PIs have submitted two patents and pursue a spin-off project for transitioning the field to the US high-technology industry.
技术摘要:该项目奠定了新型活性材料的基础 - 具有量身定制的几何形状,微观结构和磁机械性能的磁性 - 记忆纤维 - 可用作微设备的传感器,作为复合材料或细胞结构的构建块。磁场诱导的双胞胎负责单晶Ni-Mn-GA可以实现的高磁塑料菌株。相比之下,多晶Ni-Mn-GA没有磁性塑性性,因为双胞胎受到内部不兼容应力的抑制,相邻的,不良的晶粒之间产生的内部不兼容应力。 PIS最近发现,孔隙率降低了内部应力,因此可以在多晶Ni-Mn-GA泡沫中进行双胞胎,从而导致泡沫支柱中的磁性菌株。 Applying this concept to individual fibers, our hypothesis is that tailored grain size (with respect to fiber size) and grain orientations will allow tuning the magnetoplastic strain from polycrystalline (0%) to monocrystalline (~10%) behavior.In this basic study, we will develop a fundamental understanding of how fiber geometry and grain microstructure enable magnetic-field-induced strains in polycrystalline Ni-Mn-Ga纤维,导致实验验证的模型,可以定量预测给定的纤维结构的磁塑料菌株的大小。 将进行基本的实验和理论研究,探测负责纤维中磁性磁性的机制。 首先,通过使用两种多功能制造方法(Taylor电线图和融化提取),将纤维几何形状在横截面形状和直径方面变化。 然后,将量身定制纤维晶粒尺寸和纹理:晶粒与直径的比率将从1(多晶纤维)变化到〜1(竹结构),并将其与单晶纤维相比;晶粒方向将从随机到纤维质地变化。第三,将在两个长度尺度上对纤维的磁力机械性能进行表征,并在数值上进行建模:(i)基于较短的长度比例,基于双胞胎脱位和脱位交互的相互相互作用的模型将预测自由表面对小体积ni-mn-ga的本质性行为的影响; (ii)在较大长度的规模上,有限元模型将根据构成行为预测纤维内竹晶粒组装的磁力机械行为。 合作者将嵌入聚合物矩阵中的纤维以创建复合材料来研究其磁机电特性,或者创建纤维捆绑包以研究其磁性含量的属性。Non-Technical摘要:本项目是一项耦合的实验性研究,对磁性形状 - 纤维纤维的磁性磁化型磁性材料的实验性研究。 它着重于识别,量化和预测纤维几何形状和晶粒微观结构对减少内部应力的影响以及磁性塑料菌株的增强,这一现象最近通过PIS在泡沫支柱中证明了这一现象。获得的结果本质上是一般性的,因此不仅适用于Ni-MN-GA,而且适用于整个磁性形状 - 内存合金。具有量身定制的晶粒结构的Ni-MN-GA纤维有望显示出较大的磁性塑性菌株(即,在暴露于可变磁场时它们会变形),这些磁场在可变的磁场时),这些磁场比具有磁性材料的较高材料具有较高的材料较高的策略性策略性,而这些磁场均高得多。 这些Ni-MN-GA纤维可以在不进一步处理智能执行器中实施,因此可能会在工业重要性上迅速增长,从而对包括生物射手泵,印刷打印机,功率生成传感器以及HAPTECICES设备在内的各种传感器和执行器技术产生变革性的影响。除了传感器和执行器应用之外,纤维和纤维构建体还可以实现新的应用,例如由于其较大的特定区域,具有高热量速率的有效磁化设备。 该项目将教育两名研究生和几名本科生,他们的招聘将强调妇女和少数民族。除研究外,学生还将使用形状记忆材料参加各种外展活动,向年轻妇女,少数民族和小学(K-12)学生介绍材料科学和技术。该项目将利用与四个国际合作伙伴(在欧洲和亚洲)的合作,从而产生很高的知名度和影响力。 PI的最新结果引起了科学界的强烈共鸣,并在国家媒体中得到了强调。这些联系将被利用以传播拟议项目的结果。 PI已提交了两项专利,并从事衍生项目,以将该领域转移到美国高科技行业。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David Dunand其他文献

David Dunand的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David Dunand', 18)}}的其他基金

Ferroalloys and Stainless Steels with Low Carbon Footprint via Hydrogen Reduction of Oxide Blends
通过氧化物混合物的氢还原实现低碳足迹的铁合金和不锈钢
  • 批准号:
    2317002
  • 财政年份:
    2023
  • 资助金额:
    $ 34.71万
  • 项目类别:
    Standard Grant
Ink-based additive manufacturing of high-entropy alloys from oxide and hydride powders
利用氧化物和氢化物粉末基于墨水增材制造高熵合金
  • 批准号:
    2004769
  • 财政年份:
    2020
  • 资助金额:
    $ 34.71万
  • 项目类别:
    Standard Grant
Freeze-Cast Manufacturing of Stable Iron-Alloy Foams for Energy Conversion and Storage
用于能量转换和存储的稳定铁合金泡沫的冷冻铸造制造
  • 批准号:
    2015641
  • 财政年份:
    2020
  • 资助金额:
    $ 34.71万
  • 项目类别:
    Standard Grant
Size Effect on the Evolution of Kirkendall Pores in Ti-Coated Ni Wires
镀钛镍丝柯肯德尔孔演化的尺寸效应
  • 批准号:
    1611308
  • 财政年份:
    2016
  • 资助金额:
    $ 34.71万
  • 项目类别:
    Standard Grant
Processing of Advanced Foam Scaffolds for Iron-Air Battery Applications
用于铁-空气电池应用的先进泡沫支架的加工
  • 批准号:
    1562941
  • 财政年份:
    2016
  • 资助金额:
    $ 34.71万
  • 项目类别:
    Standard Grant
Collaborative Research: Enabling Magnetoplasticity in Polycrystalline Ni-Mn-Ga by Reducing Internal Constraints Through Porosity
合作研究:通过孔隙率减少内部约束,实现多晶 Ni-Mn-Ga 的磁塑性
  • 批准号:
    0805064
  • 财政年份:
    2008
  • 资助金额:
    $ 34.71万
  • 项目类别:
    Continuing Grant
Student Participant Support for the 5th International Conference MetFoam 2007, Montreal, Canada, September, 2007
2007 年第五届 MetFoam 国际会议的学生参与者支持,加拿大蒙特利尔,2007 年 9 月
  • 批准号:
    0710832
  • 财政年份:
    2007
  • 资助金额:
    $ 34.71万
  • 项目类别:
    Standard Grant
In-Situ Processing of Superconducting MgB2-Metal Composites
超导 MgB2-金属复合材料的原位加工
  • 批准号:
    0319051
  • 财政年份:
    2003
  • 资助金额:
    $ 34.71万
  • 项目类别:
    Standard Grant
SGER: Superconducting MgB2/Metal Composites
SGER:超导 MgB2/金属复合材料
  • 批准号:
    0233805
  • 财政年份:
    2002
  • 资助金额:
    $ 34.71万
  • 项目类别:
    Standard Grant
The Role of Surface Reactions and Hydrogen Surface Diffusivity on the Environmental Embrittlement of (Ni,Fe)Ti Alloys
表面反应和氢表面扩散率对 (Ni,Fe)Ti 合金环境脆化的作用
  • 批准号:
    0095381
  • 财政年份:
    2001
  • 资助金额:
    $ 34.71万
  • 项目类别:
    Continuing Grant

相似国自然基金

宽视角大尺寸裸眼真三维视频显示技术研究
  • 批准号:
    62335002
  • 批准年份:
    2023
  • 资助金额:
    241 万元
  • 项目类别:
    重点项目
非均匀衰退场景下大尺寸锂离子动力电池优化充电研究
  • 批准号:
    62303278
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
针对大尺寸样品超分辨成像的关键问题研究
  • 批准号:
    62375116
  • 批准年份:
    2023
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
尺寸效应与织构调控Cu-Nb复合线材疲劳裂纹萌生的细观机理研究
  • 批准号:
    12302093
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
基于空间干涉仪的快速逐束团及逐圈截面尺寸精确测量技术研究
  • 批准号:
    12305172
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Harnessing PET to Study the In Vivo Fate and Health Effects of Micro- and Nanoplastics
利用 PET 研究微塑料和纳米塑料的体内命运和健康影响
  • 批准号:
    10890903
  • 财政年份:
    2023
  • 资助金额:
    $ 34.71万
  • 项目类别:
Collaborative Research: Investigating the relationship between size and the balance between carbon acquisition modes in mixotrophic protists
合作研究:研究混合营养原生生物体大小与碳获取模式平衡之间的关系
  • 批准号:
    2230102
  • 财政年份:
    2023
  • 资助金额:
    $ 34.71万
  • 项目类别:
    Standard Grant
Collaborative Research: DMS/NIGMS 2: New statistical methods, theory, and software for microbiome data
合作研究:DMS/NIGMS 2:微生物组数据的新统计方法、理论和软件
  • 批准号:
    10797410
  • 财政年份:
    2023
  • 资助金额:
    $ 34.71万
  • 项目类别:
Early Neurodevelopmental Trajectories of Typical and Atypical Language Acquisition
典型和非典型语言习得的早期神经发育轨迹
  • 批准号:
    10607353
  • 财政年份:
    2023
  • 资助金额:
    $ 34.71万
  • 项目类别:
Proteomic and epigenetic alterations associated with plant-based diets and CVD
与植物性饮食和心血管疾病相关的蛋白质组学和表观遗传改变
  • 批准号:
    10900009
  • 财政年份:
    2023
  • 资助金额:
    $ 34.71万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了