Processing of Advanced Foam Scaffolds for Iron-Air Battery Applications

用于铁-空气电池应用的先进泡沫支架的加工

基本信息

  • 批准号:
    1562941
  • 负责人:
  • 金额:
    $ 32.06万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-09-01 至 2019-12-31
  • 项目状态:
    已结题

项目摘要

The generation, storage, and local use of hydrogen to generate electric power via fuel cells are critical to reaching an electrical grid with low-to-zero carbon dioxide emissions, benefiting the U.S. economy and worldwide society. In recent years, iron oxide powder has attracted attention as an inexpensive, non-toxic option to store and create pure hydrogen through the iron-oxide reduction/oxidation ("redox") reaction. One of the main problems associated with this cyclical redox reaction is powder pulverization and subsequent agglomeration and consolidation. These effects drastically reduce the high surface areas needed for the reaction. Thus, maintaining stability, high surface area and high gas permeability in the powder bed after multiple redox cycles are the main challenges for this promising technology. This award supports research to develop a structure that takes advantage of novel processing approaches to create iron scaffolds which can maintain structural integrity, high permeability and high surface area during the redox cycles, thus enabling a novel, inexpensive and non-toxic iron-air battery for large scale use.In this research program, the investigators will directionally freeze an aqueous suspension of iron oxide nanopowders to create ice dendrites, which will push the particles into interdendritic space, thus creating a network of iron oxide powders walls. After hydrogen reduction, this network is sintered into a continuous scaffold with directionally aligned channels templating the original ice dendrites, surrounded by iron walls with high surface area and enough internal free space to achieve the microstructural stability needed to withstand multiple reduction/oxidation cycles without sintering or pulverization. The scaffold stability will be further improved by adding various materials to the iron oxide nanopowder suspension: (i) nickel oxide powders which are co-reduced to form iron-nickel solid solution walls with higher strength; (ii) space-holder powders such as strontium fluoride, which can be evaporated from the scaffold walls to generate further porosity within the walls and increase their surface area and the free volume to accommodate volume changes and (iii) inert reinforcements such as ceramic particles, which will strengthen and stiffen the scaffold walls. Mechanical testing will be used to examine relative structural degradation of samples after reduction/oxidation cycles, and x-ray tomography and finite element modeling will be used to map and examine 3-dimensional scaffold structure and stress distribution within its walls during the volumetric changes associated with the redox cycles.
通过燃料电池产生、储存和本地使用氢气来发电对于实现二氧化碳排放量低至零的电网至关重要,从而造福美国经济和全球社会。近年来,氧化铁粉末作为一种廉价、无毒的选择,通过氧化铁还原/氧化(“氧化还原”)反应来储存和产生纯氢而引起了人们的关注。与这种循环氧化还原反应相关的主要问题之一是粉末粉碎以及随后的附聚和固结。这些效应大大减少了反应所需的高表面积。 因此,在多次氧化还原循环后保持粉末床的稳定性、高表面积和高透气性是这项有前途的技术的主要挑战。该奖项支持研究开发一种结构,利用新颖的加工方法来创建铁​​支架,该铁支架可以在氧化还原循环过程中保持结构完整性、高渗透性和高表面积,从而实现新型、廉价且无毒的铁空气电池的大规模使用。在该研究项目中,研究人员将定向冷冻氧化铁纳米粉末的水悬浮液以形成冰枝晶,从而将颗粒推入 枝晶间空间,从而形成氧化铁粉末壁网络。氢还原后,该网络被烧结成连续支架,该支架具有定向排列的通道,以原始冰枝晶为模板,周围是具有高表面积和足够内部自由空间的铁壁,以实现承受多次还原/氧化循环所需的微观结构稳定性,而无需烧结或粉碎。通过在氧化铁纳米粉末悬浮液中添加各种材料,将进一步提高支架稳定性:(i)氧化镍粉末,共还原形成具有更高强度的铁镍固溶体壁; (ii) 空间保持粉末,如氟化锶,它可以从支架壁上蒸发,在壁内产生进一步的孔隙度,并增加其表面积和自由体积以适应体积变化;(iii) 惰性增强材料,如陶瓷颗粒,它将强化和硬化支架壁。机械测试将用于检查还原/氧化循环后样品的相对结构降解,X射线断层扫描和有限元建模将用于绘制和检查与氧化还原循环相关的体积变化期间的3维支架结构和其壁内的应力分布。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David Dunand其他文献

Effects of bridging fibers on the evolution of lamellar architecture during Hsub2/sub/Hsub2/subO redox cycling of Fe-foams
桥连纤维对泡沫铁在氢气/水氧化还原循环过程中层状结构演变的影响
  • DOI:
    10.1016/j.actamat.2022.118543
  • 发表时间:
    2023-01-15
  • 期刊:
  • 影响因子:
    9.300
  • 作者:
    Samuel Pennell;David Dunand
  • 通讯作者:
    David Dunand

David Dunand的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David Dunand', 18)}}的其他基金

Ferroalloys and Stainless Steels with Low Carbon Footprint via Hydrogen Reduction of Oxide Blends
通过氧化物混合物的氢还原实现低碳足迹的铁合金和不锈钢
  • 批准号:
    2317002
  • 财政年份:
    2023
  • 资助金额:
    $ 32.06万
  • 项目类别:
    Standard Grant
Ink-based additive manufacturing of high-entropy alloys from oxide and hydride powders
利用氧化物和氢化物粉末基于墨水增材制造高熵合金
  • 批准号:
    2004769
  • 财政年份:
    2020
  • 资助金额:
    $ 32.06万
  • 项目类别:
    Standard Grant
Freeze-Cast Manufacturing of Stable Iron-Alloy Foams for Energy Conversion and Storage
用于能量转换和存储的稳定铁合金泡沫的冷冻铸造制造
  • 批准号:
    2015641
  • 财政年份:
    2020
  • 资助金额:
    $ 32.06万
  • 项目类别:
    Standard Grant
Size Effect on the Evolution of Kirkendall Pores in Ti-Coated Ni Wires
镀钛镍丝柯肯德尔孔演化的尺寸效应
  • 批准号:
    1611308
  • 财政年份:
    2016
  • 资助金额:
    $ 32.06万
  • 项目类别:
    Standard Grant
Collaborative Research: Size Effects on Magneto-Mechanics of Ni-Mn-Ga Fibers
合作研究:Ni-Mn-Ga 纤维磁力学的尺寸效应
  • 批准号:
    1207282
  • 财政年份:
    2012
  • 资助金额:
    $ 32.06万
  • 项目类别:
    Continuing Grant
Collaborative Research: Enabling Magnetoplasticity in Polycrystalline Ni-Mn-Ga by Reducing Internal Constraints Through Porosity
合作研究:通过孔隙率减少内部约束,实现多晶 Ni-Mn-Ga 的磁塑性
  • 批准号:
    0805064
  • 财政年份:
    2008
  • 资助金额:
    $ 32.06万
  • 项目类别:
    Continuing Grant
Student Participant Support for the 5th International Conference MetFoam 2007, Montreal, Canada, September, 2007
2007 年第五届 MetFoam 国际会议的学生参与者支持,加拿大蒙特利尔,2007 年 9 月
  • 批准号:
    0710832
  • 财政年份:
    2007
  • 资助金额:
    $ 32.06万
  • 项目类别:
    Standard Grant
In-Situ Processing of Superconducting MgB2-Metal Composites
超导 MgB2-金属复合材料的原位加工
  • 批准号:
    0319051
  • 财政年份:
    2003
  • 资助金额:
    $ 32.06万
  • 项目类别:
    Standard Grant
SGER: Superconducting MgB2/Metal Composites
SGER:超导 MgB2/金属复合材料
  • 批准号:
    0233805
  • 财政年份:
    2002
  • 资助金额:
    $ 32.06万
  • 项目类别:
    Standard Grant
The Role of Surface Reactions and Hydrogen Surface Diffusivity on the Environmental Embrittlement of (Ni,Fe)Ti Alloys
表面反应和氢表面扩散率对 (Ni,Fe)Ti 合金环境脆化的作用
  • 批准号:
    0095381
  • 财政年份:
    2001
  • 资助金额:
    $ 32.06万
  • 项目类别:
    Continuing Grant

相似国自然基金

面向用户体验的IMT-Advanced系统跨层无线资源分配技术研究
  • 批准号:
    61201232
  • 批准年份:
    2012
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
LTE-Advanced中继网络关键技术研究
  • 批准号:
    61171096
  • 批准年份:
    2011
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
IMT-Advanced协作中继网络中的网络编码研究
  • 批准号:
    61040005
  • 批准年份:
    2010
  • 资助金额:
    10.0 万元
  • 项目类别:
    专项基金项目
基于干扰预测的IMT-Advanced多小区干扰抑制技术研究
  • 批准号:
    61001116
  • 批准年份:
    2010
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
面向IMT-Advanced的移动组播关键技术研究
  • 批准号:
    61001071
  • 批准年份:
    2010
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

NSF-BSF: Towards a Molecular Understanding of Dynamic Active Sites in Advanced Alkaline Water Oxidation Catalysts
NSF-BSF:高级碱性水氧化催化剂动态活性位点的分子理解
  • 批准号:
    2400195
  • 财政年份:
    2024
  • 资助金额:
    $ 32.06万
  • 项目类别:
    Standard Grant
SBIR Phase II: Innovative Glass Inspection for Advanced Semiconductor Packaging
SBIR 第二阶段:先进半导体封装的创新玻璃检测
  • 批准号:
    2335175
  • 财政年份:
    2024
  • 资助金额:
    $ 32.06万
  • 项目类别:
    Cooperative Agreement
STTR Phase I: Advanced Lithium Metal Anodes for Solid-State Batteries
STTR 第一阶段:用于固态电池的先进锂金属阳极
  • 批准号:
    2335454
  • 财政年份:
    2024
  • 资助金额:
    $ 32.06万
  • 项目类别:
    Standard Grant
EvaluATE: The Evaluation Hub for Advanced Technological Education
EvaluATE:先进技术教育评估中心
  • 批准号:
    2332143
  • 财政年份:
    2024
  • 资助金额:
    $ 32.06万
  • 项目类别:
    Standard Grant
Highly Ce3+ - doped Glass Material for Advanced Photonic Devices
用于先进光子器件的高掺杂 Ce3 玻璃材料
  • 批准号:
    2310284
  • 财政年份:
    2024
  • 资助金额:
    $ 32.06万
  • 项目类别:
    Continuing Grant
Advanced HR-ICP-MS facility for marine, Antarctic and environmental samples
用于海洋、南极和环境样品的先进 HR-ICP-MS 设施
  • 批准号:
    LE240100039
  • 财政年份:
    2024
  • 资助金额:
    $ 32.06万
  • 项目类别:
    Linkage Infrastructure, Equipment and Facilities
Zwitterion-based electrolytes for advanced energy technologies
用于先进能源技术的两性离子电解质
  • 批准号:
    DP240101407
  • 财政年份:
    2024
  • 资助金额:
    $ 32.06万
  • 项目类别:
    Discovery Projects
Decoupling Corrosion of Electrode and Electrolyte in Advanced Batteries
先进电池中电极和电解质的解耦腐蚀
  • 批准号:
    24K17761
  • 财政年份:
    2024
  • 资助金额:
    $ 32.06万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Developing Advanced Cryptanalysis Techniques for Symmetric-key Primitives with Real-world Public-key Applications
使用现实世界的公钥应用开发对称密钥原语的高级密码分析技术
  • 批准号:
    24K20733
  • 财政年份:
    2024
  • 资助金额:
    $ 32.06万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Induction Melt Incremental Thermoforming of Advanced Thermoplastic Composites
先进热塑性复合材料的感应熔融增量热成型
  • 批准号:
    EP/X02766X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 32.06万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了