Processing of Advanced Foam Scaffolds for Iron-Air Battery Applications
用于铁-空气电池应用的先进泡沫支架的加工
基本信息
- 批准号:1562941
- 负责人:
- 金额:$ 32.06万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The generation, storage, and local use of hydrogen to generate electric power via fuel cells are critical to reaching an electrical grid with low-to-zero carbon dioxide emissions, benefiting the U.S. economy and worldwide society. In recent years, iron oxide powder has attracted attention as an inexpensive, non-toxic option to store and create pure hydrogen through the iron-oxide reduction/oxidation ("redox") reaction. One of the main problems associated with this cyclical redox reaction is powder pulverization and subsequent agglomeration and consolidation. These effects drastically reduce the high surface areas needed for the reaction. Thus, maintaining stability, high surface area and high gas permeability in the powder bed after multiple redox cycles are the main challenges for this promising technology. This award supports research to develop a structure that takes advantage of novel processing approaches to create iron scaffolds which can maintain structural integrity, high permeability and high surface area during the redox cycles, thus enabling a novel, inexpensive and non-toxic iron-air battery for large scale use.In this research program, the investigators will directionally freeze an aqueous suspension of iron oxide nanopowders to create ice dendrites, which will push the particles into interdendritic space, thus creating a network of iron oxide powders walls. After hydrogen reduction, this network is sintered into a continuous scaffold with directionally aligned channels templating the original ice dendrites, surrounded by iron walls with high surface area and enough internal free space to achieve the microstructural stability needed to withstand multiple reduction/oxidation cycles without sintering or pulverization. The scaffold stability will be further improved by adding various materials to the iron oxide nanopowder suspension: (i) nickel oxide powders which are co-reduced to form iron-nickel solid solution walls with higher strength; (ii) space-holder powders such as strontium fluoride, which can be evaporated from the scaffold walls to generate further porosity within the walls and increase their surface area and the free volume to accommodate volume changes and (iii) inert reinforcements such as ceramic particles, which will strengthen and stiffen the scaffold walls. Mechanical testing will be used to examine relative structural degradation of samples after reduction/oxidation cycles, and x-ray tomography and finite element modeling will be used to map and examine 3-dimensional scaffold structure and stress distribution within its walls during the volumetric changes associated with the redox cycles.
通过燃料电池产生电力的一代,存储和本地用途对于达到具有低到零二氧化碳排放的电网至关重要,从而使美国经济和全球社会受益。近年来,氧化铁粉末引起了人们的注意,是一种廉价的无毒选择,可以通过氧化铁还原/氧化(“氧化还原”)反应来存储和产生纯氢。与这种周期性氧化还原反应相关的主要问题之一是粉末粉碎以及随后的聚集和巩固。这些影响大大减少了反应所需的高表面积。 因此,在多个氧化还原周期后保持稳定性,高表面积和粉末床的高气体渗透性是这项有前途的技术的主要挑战。 This award supports research to develop a structure that takes advantage of novel processing approaches to create iron scaffolds which can maintain structural integrity, high permeability and high surface area during the redox cycles, thus enabling a novel, inexpensive and non-toxic iron-air battery for large scale use.In this research program, the investigators will directionally freeze an aqueous suspension of iron oxide nanopowders to create ice dendrites, which will push the particles into基础间空间,从而形成了一个氧化铁网络。还原氢后,该网络被烧结成连续的支架,该连续支架具有指向对齐的通道,这些通道模板是原始的冰树突,周围是具有高表面积和足够内部自由空间的铁壁包围,以实现在不烧伤或粉碎的情况下承受多重还原/氧化循环所需的微观结构稳定性。通过向氧化铁纳米伏悬浮液中添加各种材料,将进一步提高脚手架稳定性:(i)氧化镍粉被共同减少以形成具有较高强度的铁核固体溶液壁; (ii)可以从脚手架壁中蒸发的太空持有粉,例如氟化腹膜,以在墙壁内产生进一步的孔隙度,增加其表面积和自由体积以适应体积变化,并且(iii)惰性增强剂,例如陶瓷颗粒,可以增强和僵硬的cap虫壁。机械测试将用于检查还原/氧化周期后样品的相对结构降解,X射线断层扫描和有限元建模将用于在与Redox循环相关的体积变化期间绘制和检查其壁中的3维支架结构和应力分布。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Dunand其他文献
David Dunand的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Dunand', 18)}}的其他基金
Ferroalloys and Stainless Steels with Low Carbon Footprint via Hydrogen Reduction of Oxide Blends
通过氧化物混合物的氢还原实现低碳足迹的铁合金和不锈钢
- 批准号:
2317002 - 财政年份:2023
- 资助金额:
$ 32.06万 - 项目类别:
Standard Grant
Ink-based additive manufacturing of high-entropy alloys from oxide and hydride powders
利用氧化物和氢化物粉末基于墨水增材制造高熵合金
- 批准号:
2004769 - 财政年份:2020
- 资助金额:
$ 32.06万 - 项目类别:
Standard Grant
Freeze-Cast Manufacturing of Stable Iron-Alloy Foams for Energy Conversion and Storage
用于能量转换和存储的稳定铁合金泡沫的冷冻铸造制造
- 批准号:
2015641 - 财政年份:2020
- 资助金额:
$ 32.06万 - 项目类别:
Standard Grant
Size Effect on the Evolution of Kirkendall Pores in Ti-Coated Ni Wires
镀钛镍丝柯肯德尔孔演化的尺寸效应
- 批准号:
1611308 - 财政年份:2016
- 资助金额:
$ 32.06万 - 项目类别:
Standard Grant
Collaborative Research: Size Effects on Magneto-Mechanics of Ni-Mn-Ga Fibers
合作研究:Ni-Mn-Ga 纤维磁力学的尺寸效应
- 批准号:
1207282 - 财政年份:2012
- 资助金额:
$ 32.06万 - 项目类别:
Continuing Grant
Collaborative Research: Enabling Magnetoplasticity in Polycrystalline Ni-Mn-Ga by Reducing Internal Constraints Through Porosity
合作研究:通过孔隙率减少内部约束,实现多晶 Ni-Mn-Ga 的磁塑性
- 批准号:
0805064 - 财政年份:2008
- 资助金额:
$ 32.06万 - 项目类别:
Continuing Grant
Student Participant Support for the 5th International Conference MetFoam 2007, Montreal, Canada, September, 2007
2007 年第五届 MetFoam 国际会议的学生参与者支持,加拿大蒙特利尔,2007 年 9 月
- 批准号:
0710832 - 财政年份:2007
- 资助金额:
$ 32.06万 - 项目类别:
Standard Grant
In-Situ Processing of Superconducting MgB2-Metal Composites
超导 MgB2-金属复合材料的原位加工
- 批准号:
0319051 - 财政年份:2003
- 资助金额:
$ 32.06万 - 项目类别:
Standard Grant
SGER: Superconducting MgB2/Metal Composites
SGER:超导 MgB2/金属复合材料
- 批准号:
0233805 - 财政年份:2002
- 资助金额:
$ 32.06万 - 项目类别:
Standard Grant
The Role of Surface Reactions and Hydrogen Surface Diffusivity on the Environmental Embrittlement of (Ni,Fe)Ti Alloys
表面反应和氢表面扩散率对 (Ni,Fe)Ti 合金环境脆化的作用
- 批准号:
0095381 - 财政年份:2001
- 资助金额:
$ 32.06万 - 项目类别:
Continuing Grant
相似国自然基金
基于先进算法和行为分析的江南传统村落微气候的评价方法、影响机理及优化策略研究
- 批准号:52378011
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
新一代重要有机酸反式乌头酸的先进生物制造技术
- 批准号:22338012
- 批准年份:2023
- 资助金额:230 万元
- 项目类别:重点项目
关联锂离子电池正极动力学-热力学与构效-失效机制的先进同步辐射研究
- 批准号:12375328
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
先进运行模式中稳态远轴内部输运垒的调控机理研究
- 批准号:12375233
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
含Re、Ru先进镍基单晶高温合金中TCP相成核—生长机理的原位动态研究
- 批准号:52301178
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Development of an advanced body protection system for sports employing air, foam and exocage technologies. Pro-SAFE
采用空气、泡沫和 exocage 技术开发先进的运动身体保护系统。
- 批准号:
32695 - 财政年份:2019
- 资助金额:
$ 32.06万 - 项目类别:
Collaborative R&D
Chlamydia pneumoniae persistance in the blood vessel
肺炎衣原体在血管中持续存在
- 批准号:
9031212 - 财政年份:2016
- 资助金额:
$ 32.06万 - 项目类别:
The pathophysiological role of the immunoproteasome in atherosclerosis
免疫蛋白酶体在动脉粥样硬化中的病理生理作用
- 批准号:
9198028 - 财政年份:2014
- 资助金额:
$ 32.06万 - 项目类别:
The pathophysiological role of the immunoproteasome in atherosclerosis
免疫蛋白酶体在动脉粥样硬化中的病理生理作用
- 批准号:
8634347 - 财政年份:2014
- 资助金额:
$ 32.06万 - 项目类别:
The pathophysiological role of the immunoproteasome in atherosclerosis
免疫蛋白酶体在动脉粥样硬化中的病理生理作用
- 批准号:
8989563 - 财政年份:2014
- 资助金额:
$ 32.06万 - 项目类别: