Collaborative Research: Enabling Magnetoplasticity in Polycrystalline Ni-Mn-Ga by Reducing Internal Constraints Through Porosity
合作研究:通过孔隙率减少内部约束,实现多晶 Ni-Mn-Ga 的磁塑性
基本信息
- 批准号:0805064
- 负责人:
- 金额:$ 33万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-05-01 至 2013-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
TECHNICAL: Magnetic-field-induced twinning is responsible for the high magnetoplastic strains achievable in monocrystalline Ni-Mn-Ga. By contrast, polycrystalline Ni-Mn-Ga shows no magnetoplasticity because twinning is inhibited by internal incompatibility stresses developed between adjacent grains. The PIs recently discovered that porosity, because it reduces internal stresses, allows limited twinning to occur in polycrystalline Ni-Mn-Ga foams, resulting in magnetoplastic strains. Then, designing the foam architecture and grain microstructure will allow tuning continuously the magnetoplastic strain of these foams between those of a polycrystal (~0%) and a single crystal (~10%). In this basic study, PIs will develop a fundamental understanding of how foam architecture and grain microstructure enable magnetic-field-induced strains in polycrystalline magnetic shape-memory alloys, leading to experimentally-validated models that can quantitatively predict the magnitude of magnetoplastic strain for a given foam structure. To achieve this goal, fundamental experimental and theoretical studies of the mechanisms responsible for magnetoplasticity in the individual struts of foams will be carried out. The foam architecture will be varied, in terms of node and strut volume fraction as well as strut size and aspect ratio, by using two foam manufacturing methods (casting and powder metallurgy). The foam grain size and texture will be tailored: the ratio of grain to strut diameter will be varied from much smaller than unity (polycrystalline microstructure) to comparable to unity (bamboo microstructure), and the texture will be varied from random to strong fiber texture. Finally, the magneto-mechanical properties of the resulting foams will be characterized and numerically modeled on two length scales: at a shorter length scale, models based on dislocation-dislocation and dislocation-interface interactions will be developed to predict the effect of free surfaces on the constitutive behavior of Ni-Mn-Ga in small volumes; at larger length scale, finite-element models (FEM) will be created to predict, based on the constitutive behavior, the overall foam magneto-mechanical behavior. NON-TECHNICAL: The novel magnetic shape-memory foams, produced by the PIs in preliminary research, exhibit strains and response times comparable to Terfenol D, the best commercial magnetostrictive material, and are expected to show further improvements based on these fundamental study. As compared to Terfenol D, Ni-Mn-Ga foams have lower density and contain less expensive metals, and may thus grow rapidly in industrial importance, thus having a transformative effect on various sensor and actuator technologies. Also, while the present research will focus on Ni-Mn-Ga, the mechanisms studied are general in nature, and will thus apply to all other magnetic shape-memory alloys. Beyond sensor and actuator applications, the open foam porosity may enable new applications such as (i) micropumps without moving parts where fluids are displaced by magnetically deforming pores, or (ii) efficient magnetic cooling devices with high heat-transfer rates due to the large specific areas of foams. Finally, this project will educate two graduate students and several undergraduate students, whose recruitment will emphasize women and minorities. Beside research, the students will participate in various outreach activities using the shape-memory materials to introduce materials science and technology to young women, minorities, and grade school (K-12) students. The PIs have submitted a provisional patent and intend to pursue industrial applications which is key for transitioning the field to the US high-technology industry.
技术:磁场引起的双胞胎负责单晶Ni-Mn-GA中可以实现的高磁塑料菌株。相比之下,多晶Ni-Mn-GA没有磁性塑性性,因为双胞胎受到相邻晶粒之间产生的内部不兼容应力的抑制。 PIS最近发现,孔隙率降低了内部应力,因此在多晶Ni-Mn-GA泡沫中允许有限的双胞胎发生,从而导致磁性塑料菌株。然后,设计泡沫结构和谷物微观结构将允许在多晶(〜0%)和单个晶体(〜10%)之间连续调整这些泡沫的磁性塑料应变。在这项基础研究中,PIS将对泡沫结构和谷物微结构如何在多晶型磁性形状 - 内存合金中启用磁场诱导的菌株有基本的理解,从而导致实验验证的模型,从而可以定量地预测给定泡沫结构的磁性应变的幅度。为了实现这一目标,将对泡沫单个支撑磁性的机制进行基本实验和理论研究。通过使用两种泡沫制造方法(铸造和粉末冶金),就节点和支撑量分数以及支撑尺寸和纵横比而言,泡沫结构将变化。泡沫晶粒尺寸和纹理将被量身定制:晶粒与支撑直径的比率将从小于统一(多晶微观结构)到与统一(竹制微结构)相当的小得多,并且纹理将从随机的纤维质地变化。最后,将在两个长度尺度上对所得泡沫的磁力机械特性进行表征和数值模型:在较短的长度尺度上,基于脱位 - 脱位和脱位 - 接口相互作用的模型,以预测自由表面对小体积中Ni-Mn-GA组成型行为的影响;在较大长度的规模下,将创建有限元模型(FEM),以根据本构行为(总体泡沫磁力机械行为)预测。非技术:新型的磁性内存泡沫,由PI在初步研究中产生的新型磁性泡沫表现出与Terfenol D相当的菌株和响应时间,Terfenol D是最佳的商业磁性材料,并有望根据这些基本研究显示进一步的改进。与萜酚D相比,Ni-MN-GA泡沫的密度较低,含有较低的金属,因此可能在工业重要性上迅速增长,从而对各种传感器和执行器技术产生变革效应。同样,尽管本研究将集中在Ni-MN-GA上,但所研究的机制本质上是普遍的,因此将适用于所有其他磁性磁性合金。除了传感器和执行器应用之外,开放的泡沫孔隙率还可以实现新的应用,例如(i)微型泵,而没有运动部件,而动态孔被磁性变形孔置换,或者(ii)由于大型泡沫的大面积,具有高热量转移速率的有效磁性冷却设备。最后,该项目将教育两名研究生和几名本科生,他们的招聘将强调妇女和少数民族。除研究外,学生还将使用形状记忆材料参加各种外展活动,向年轻妇女,少数民族和小学(K-12)学生介绍材料科学和技术。 PI已提交临时专利,并打算从事工业应用,这是将该领域转移到美国高科技行业的关键。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Dunand其他文献
David Dunand的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Dunand', 18)}}的其他基金
Ferroalloys and Stainless Steels with Low Carbon Footprint via Hydrogen Reduction of Oxide Blends
通过氧化物混合物的氢还原实现低碳足迹的铁合金和不锈钢
- 批准号:
2317002 - 财政年份:2023
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
Ink-based additive manufacturing of high-entropy alloys from oxide and hydride powders
利用氧化物和氢化物粉末基于墨水增材制造高熵合金
- 批准号:
2004769 - 财政年份:2020
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
Freeze-Cast Manufacturing of Stable Iron-Alloy Foams for Energy Conversion and Storage
用于能量转换和存储的稳定铁合金泡沫的冷冻铸造制造
- 批准号:
2015641 - 财政年份:2020
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
Size Effect on the Evolution of Kirkendall Pores in Ti-Coated Ni Wires
镀钛镍丝柯肯德尔孔演化的尺寸效应
- 批准号:
1611308 - 财政年份:2016
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
Processing of Advanced Foam Scaffolds for Iron-Air Battery Applications
用于铁-空气电池应用的先进泡沫支架的加工
- 批准号:
1562941 - 财政年份:2016
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
Collaborative Research: Size Effects on Magneto-Mechanics of Ni-Mn-Ga Fibers
合作研究:Ni-Mn-Ga 纤维磁力学的尺寸效应
- 批准号:
1207282 - 财政年份:2012
- 资助金额:
$ 33万 - 项目类别:
Continuing Grant
Student Participant Support for the 5th International Conference MetFoam 2007, Montreal, Canada, September, 2007
2007 年第五届 MetFoam 国际会议的学生参与者支持,加拿大蒙特利尔,2007 年 9 月
- 批准号:
0710832 - 财政年份:2007
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
In-Situ Processing of Superconducting MgB2-Metal Composites
超导 MgB2-金属复合材料的原位加工
- 批准号:
0319051 - 财政年份:2003
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
SGER: Superconducting MgB2/Metal Composites
SGER:超导 MgB2/金属复合材料
- 批准号:
0233805 - 财政年份:2002
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
The Role of Surface Reactions and Hydrogen Surface Diffusivity on the Environmental Embrittlement of (Ni,Fe)Ti Alloys
表面反应和氢表面扩散率对 (Ni,Fe)Ti 合金环境脆化的作用
- 批准号:
0095381 - 财政年份:2001
- 资助金额:
$ 33万 - 项目类别:
Continuing Grant
相似国自然基金
支持二维毫米波波束扫描的微波/毫米波高集成度天线研究
- 批准号:62371263
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
腙的Heck/脱氮气重排串联反应研究
- 批准号:22301211
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
水系锌离子电池协同性能调控及枝晶抑制机理研究
- 批准号:52364038
- 批准年份:2023
- 资助金额:33 万元
- 项目类别:地区科学基金项目
基于人类血清素神经元报告系统研究TSPYL1突变对婴儿猝死综合征的致病作用及机制
- 批准号:82371176
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
FOXO3 m6A甲基化修饰诱导滋养细胞衰老效应在补肾法治疗自然流产中的机制研究
- 批准号:82305286
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: Enabling Cloud-Permitting and Coupled Climate Modeling via Nonhydrostatic Extensions of the CESM Spectral Element Dynamical Core
合作研究:通过 CESM 谱元动力核心的非静水力扩展实现云允许和耦合气候建模
- 批准号:
2332469 - 财政年份:2024
- 资助金额:
$ 33万 - 项目类别:
Continuing Grant
Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
- 批准号:
2402804 - 财政年份:2024
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
Collaborative Research: CPS: NSF-JST: Enabling Human-Centered Digital Twins for Community Resilience
合作研究:CPS:NSF-JST:实现以人为本的数字孪生,提高社区复原力
- 批准号:
2420846 - 财政年份:2024
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
- 批准号:
2402806 - 财政年份:2024
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
- 批准号:
2402805 - 财政年份:2024
- 资助金额:
$ 33万 - 项目类别:
Standard Grant