Probing smooth and symplectic topology using maps to dimension two
使用二维映射探测光滑和辛拓扑
基本信息
- 批准号:1207721
- 负责人:
- 金额:$ 16.29万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-08-15 至 2017-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The P.I. proposes to use maps to 2-dimensional spaces as a probe of the smooth and symplectic topology of manifolds, in analogy with the use of Morse functions, which are maps to 1-dimensional spaces. The P.I. proposes to consider generic stable maps to 2-manifolds (Morse 2-functions), Lefschetz fibrations, open book decompositions and toric and locally toric fibrations, and proposes several problems that suggest how to unify the study of these different types of functions. The study of Morse 2-functions, in collaboration with Robion Kirby, should lead to new invariants of smooth manifolds, especially of interest in dimension 4. The study of Lefschetz fibrations and open book decompositions, in collaboration with Thomas Mark, centers around symplectic convexity and 4-dimensional symplectic surgeries and is thus aimed at new constructions of symplectic 4-manifolds. Toric geometry plays a role in the P.I.'s collaboration with Olguta Buse, which looks at 3-dimensional contact analogs of symplectic embedding and packing problems. Finally, all three threads are tied together by the P.I.?s program to develop a general theory of smooth 4-manifolds with locally toric fibrations over integral affine 2-complexes (as in tropical geometry); such a picture is implicit in certain aspects of the P.I.?s work with Symington, Stipsicz and Mark and will be developed properly in this program.Smooth manifolds are spaces like the one we live in, the universe. Normally we think of it as a 3-dimensional space, but if we include time it is really 4-dimensional. The dimension is just the number of numbers you need to give to specify your location (latitude, longitude and elevation, for example). Statistical social scientists work in many dimensions, for example, when they record many numbers for each individual in a survey. Understanding the overall structure (the topology) of spaces of various dimensions is important in applications ranging from robotics to statistics to biology and is also appealing for its own beauty. Here the P.I. and collaborators will work to understand this structure by casting shadows of these spaces on 2-dimensional surfaces, in much the same way that we understand the 3-dimensional world around us through images projected onto our 2-dimensional retinas. To reach out to a broader audience and encourage budding enthusiasm for mathematics, the P.I. will work with Euclid Lab to run a mathematics research program for high school students utilizing a virtual learning environment, studying questions pertaining to the main research program of this project.
私家侦探建议使用映射到2维空间作为探针的光滑和辛拓扑的流形,在类比使用的莫尔斯功能,这是映射到1维空间。私家侦探建议考虑一般稳定映射到2-流形(莫尔斯2-函数),Lefschetz纤维化,开卷分解和环面和局部环面纤维化,并提出了几个问题,建议如何统一研究这些不同类型的功能。研究莫尔斯2-功能,在合作与罗比,应导致新的不变量的光滑流形,特别是在4维的兴趣。与托马斯马克合作的莱夫谢茨纤维化和开书分解的研究围绕着辛凸性和4维辛外科手术,因此旨在辛4流形的新构造。复曲面几何在PI中发挥着作用的合作与Olguta Buse,着眼于3维接触类似的辛嵌入和包装问题。最后,这三条线都被私家侦探绑在了一起。的计划,以发展一个一般性的理论,顺利4-流形与局部复曲面纤维化的积分仿射2-复体(如在热带几何),这样的图片是隐含在某些方面的PI?我们与Symington,Stipsicz和Mark一起工作,并将在本程序中适当地开发。光滑流形是像我们生活的宇宙一样的空间。通常我们认为它是一个三维空间,但如果我们包括时间,它实际上是四维的。维度只是你需要给出的指定你的位置的数字的数量(例如纬度,经度和海拔)。统计社会科学家在许多方面工作,例如,当他们在调查中为每个人记录许多数字时。理解不同维度空间的整体结构(拓扑结构)在从机器人到统计学到生物学的应用中非常重要,并且其自身的美也很吸引人。这是私家侦探合作者将通过在二维表面投射这些空间的阴影来理解这种结构,就像我们通过投射到二维视网膜上的图像来理解我们周围的三维世界一样。为了接触更广泛的受众,鼓励对数学的热情萌芽,P.I.将与欧几里得实验室合作,利用虚拟学习环境为高中生运行一个数学研究项目,研究与该项目主要研究项目有关的问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Gay其他文献
Yada: Straightforward parallel programming
- DOI:
10.1016/j.parco.2011.02.005 - 发表时间:
2011-09-01 - 期刊:
- 影响因子:
- 作者:
David Gay;Joel Galenson;Mayur Naik;Kathy Yelick - 通讯作者:
Kathy Yelick
Modal content and noise characteristics of a cw argon ion laser with an optical feedback: Numerical simulations of experimental results
- DOI:
10.1016/j.optcom.2005.01.029 - 发表时间:
2005-05-01 - 期刊:
- 影响因子:
- 作者:
David Gay;Nathalie McCarthy - 通讯作者:
Nathalie McCarthy
Rms characterization of Bessel–Gauss beams: Correspondence between polar and Cartesian representations
- DOI:
10.1016/j.optcom.2006.02.041 - 发表时间:
2006-09-01 - 期刊:
- 影响因子:
- 作者:
Guy Rousseau;David Gay;Michel Piché - 通讯作者:
Michel Piché
David Gay的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Gay', 18)}}的其他基金
Smooth 4-Manifolds: 2-3, 5- and 6-Dimensional Perspectives
平滑 4 流形:2-3、5 和 6 维视角
- 批准号:
2005554 - 财政年份:2020
- 资助金额:
$ 16.29万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Trisections -- New Directions in Low-Dimensional Topology
FRG:协作研究:三等分——低维拓扑的新方向
- 批准号:
1664567 - 财政年份:2017
- 资助金额:
$ 16.29万 - 项目类别:
Standard Grant
Math and Parent Partnerships in the Southwest (MAPPS)
西南地区数学和家长合作伙伴关系 (MAPPS)
- 批准号:
9901275 - 财政年份:1999
- 资助金额:
$ 16.29万 - 项目类别:
Continuing Grant
Making Everybody Count: Transforming the Middle School Mathematics Classroom
让每个人都发挥作用:改变中学数学课堂
- 批准号:
9155284 - 财政年份:1992
- 资助金额:
$ 16.29万 - 项目类别:
Standard Grant
Making Math Count: A Training Program for Middle School Mathematics Teachers
让数学变得有价值:中学数学教师培训计划
- 批准号:
8850990 - 财政年份:1989
- 资助金额:
$ 16.29万 - 项目类别:
Standard Grant
Computing Perturbation Bounds For Systems of Nonlinear Equations
计算非线性方程组的扰动界
- 批准号:
7904819 - 财政年份:1979
- 资助金额:
$ 16.29万 - 项目类别:
Standard Grant
Effective Modularization of Nonlinear Unconstrained Optimization Subroutines: a Substantive User Liaison With Minpack
非线性无约束优化子程序的有效模块化:与 Minpack 的实质性用户联络
- 批准号:
7600324 - 财政年份:1976
- 资助金额:
$ 16.29万 - 项目类别:
Standard Grant
相似国自然基金
LIPUS促进微环境巨噬细胞释放CCL2诱导尿道周围平滑肌祖细胞定植与分化的机制研究
- 批准号:82370780
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
硫化氢通过核转录因子-kB信号途径调节高血压大鼠血管平滑肌细胞增殖的研究
- 批准号:81070212
- 批准年份:2010
- 资助金额:33.0 万元
- 项目类别:面上项目
骨髓基质干细胞体外构建耳廓形态软骨
- 批准号:30973131
- 批准年份:2009
- 资助金额:35.0 万元
- 项目类别:面上项目
肿瘤抑制基因PTEN对人气道平滑肌增殖、凋亡和迁移的影响
- 批准号:30770936
- 批准年份:2007
- 资助金额:30.0 万元
- 项目类别:面上项目
相似海外基金
CAREER: Elucidating the fundamental mechanisms of stress corrosion cracking from smooth tensile specimens under constant load for quantitative life-prediction
职业:阐明恒定载荷下光滑拉伸样品应力腐蚀开裂的基本机制,以进行定量寿命预测
- 批准号:
2339696 - 财政年份:2024
- 资助金额:
$ 16.29万 - 项目类别:
Continuing Grant
An image-based AI tool to identify stiffness- or age-related mechanotransduction abnormalities in vascular smooth muscle cells
一种基于图像的人工智能工具,用于识别血管平滑肌细胞中与硬度或年龄相关的机械转导异常
- 批准号:
BB/Y513994/1 - 财政年份:2024
- 资助金额:
$ 16.29万 - 项目类别:
Research Grant
Fabrication of contractable vascular model through smooth muscle tissue and functional assessment under drug testing
平滑肌组织可收缩血管模型的制作及药物测试下的功能评估
- 批准号:
23K19195 - 财政年份:2023
- 资助金额:
$ 16.29万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Passive interlocking mechanisms that generate smooth locomotion inherent in the musculoskeletal system of archosaurs
产生祖龙肌肉骨骼系统固有的平滑运动的被动联锁机制
- 批准号:
23K03765 - 财政年份:2023
- 资助金额:
$ 16.29万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The Epigenetic Regulator Prdm16 Controls Smooth Muscle Phenotypic Modulation and Atherosclerosis Risk
表观遗传调节因子 Prdm16 控制平滑肌表型调节和动脉粥样硬化风险
- 批准号:
10537602 - 财政年份:2023
- 资助金额:
$ 16.29万 - 项目类别:
Selective targeting of matrix metalloproteinases for developing preterm labor therapeutics
选择性靶向基质金属蛋白酶用于开发早产疗法
- 批准号:
10509786 - 财政年份:2023
- 资助金额:
$ 16.29万 - 项目类别:
Isoform- and Sex-Specific Functions of CGRP in Gastrointestinal Motility
CGRP 在胃肠动力中的亚型和性别特异性功能
- 批准号:
10635765 - 财政年份:2023
- 资助金额:
$ 16.29万 - 项目类别:
Role of IL-6 trans signaling in atherosclerosis development and late-stage pathogenesis
IL-6反式信号传导在动脉粥样硬化发展和晚期发病机制中的作用
- 批准号:
10652788 - 财政年份:2023
- 资助金额:
$ 16.29万 - 项目类别:
A Novel Approach to Target Neutrophilic Airway Inflammation and Airway Hyperresponsiveness in Therapy-Resistant (Refractory) Asthma.
一种针对难治性哮喘中性粒细胞性气道炎症和气道高反应性的新方法。
- 批准号:
10659658 - 财政年份:2023
- 资助金额:
$ 16.29万 - 项目类别:
Vascular Smooth Muscle Protein Quality Control and Aortic Aneurysm Formation
血管平滑肌蛋白质量控制与主动脉瘤形成
- 批准号:
10714562 - 财政年份:2023
- 资助金额:
$ 16.29万 - 项目类别: