Metamaterials and Inverse Problems
超材料和反问题
基本信息
- 批准号:1211359
- 负责人:
- 金额:$ 86.18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-07-01 至 2018-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The research supported by this award will explore the range of electromagnetic properties that composite materials formed from constituent materials with extreme properties can exhibit, at a single frequency, and over a broad range of frequencies. Any interesting behavior that the exotic microstructures, introduced for the first time here, are found to exhibit should motivate the search for practical microstructures exhibiting similar interesting effects. The project also addresses the practically important problem of placing rigorous upper and lower limits (bounds) on the volume of an inclusion in a body using a small number of measurements of the electromagnetic or elastic fields at the surface of the body, focusing on the electromagnetic case in the quasistatic regime where the wavelength of the time harmonic fields is much larger than the microstructure and the moduli and fields are complex. Additionally, the project introduces a new approach for estimating the volume fractions of the phases in a two-phase composite, from measurements of the effective bulk modulus, and bulk and shear moduli of the phases at a set of real frequencies in the quasistatic regime. Finally the research project seeks to find corrections to the effective moduli of composites due to the imperfectness of the interfaces between phases, in the case where the imperfection is not too great. The formulae should facilitate the calculation of effective moduli with imperfect interfaces given numerical solutions for perfect interfaces.Metamaterials are man-made composite materials with properties that are unachievable in ordinary materials. A better understanding of the macroscopic response of such metamaterials has widespread technological importance. There is a constant need for new materials in the defense, automotive, aerospace, electronics and other manufacturing and telecommunication industries. The impact of such new materials is likely to be greatest when their properties are radically different from any material we know. This project will help shape a picture outlining what electromagnetic responses of materials are possible. In a second direction, for biomedical, engineering and counterterrorism applications it is vitally important to determine what is inside a body using non-invasive testing, and it is better if one can say things with near certainty. The project will give precise lower and upper limits on the volume occupied by an inclusion in a body, or by one phase in a two-phase composite. This may have future applications to determining the size of cancer tumors, or of voids in a body, or the porosity in an osteoporotic bone. In a third direction, new mathematical approximations for physical effects of imperfections at the interface between two different materials will be developed, which are expected to be of use in the practical design of new composite materials. The award will help train a postdoctoral associate and a graduate student in an interdisciplinary research area.
该奖项支持的研究将探索由具有极端特性的组成材料形成的复合材料在单一频率和广泛频率范围内可以表现出的电磁特性。任何有趣的行为,奇异的微观结构,介绍了第一次在这里,被发现表现出应激励实际的微观结构表现出类似的有趣的效果的搜索。该项目还解决了实际上重要的问题,严格的上限和下限(边界)的体积上的夹杂物在一个身体使用少量的测量电磁或弹性场在身体的表面,集中在准静态制度的时间谐波场的波长远大于微观结构和模量和字段是复杂的电磁情况。此外,该项目介绍了一种新的方法来估计两相复合材料中各相的体积分数,从测量的有效体积模量,体积和剪切模量的阶段在一组真实的频率在准静态政权。最后,研究项目旨在寻找修正的有效模量的复合材料,由于各相之间的界面的不规则性,在不完美的情况下,是不是太大。这些公式可以方便地计算非理想界面的有效模量,并给出理想界面的数值解。异向介质是一种人造复合材料,具有普通材料无法达到的特性。更好地理解这种超材料的宏观响应具有广泛的技术重要性。 国防、汽车、航空航天、电子和其他制造业和电信行业对新材料的需求不断增加。当这些新材料的性质与我们已知的任何材料都截然不同时,它们的影响可能是最大的。这个项目将有助于形成一个概述材料的电磁响应是可能的图片。在第二个方向上,对于生物医学,工程和反恐应用,使用非侵入性测试来确定体内的东西是至关重要的,如果人们可以近乎肯定地说,那就更好了。该项目将给出物体中夹杂物或两相复合物中一相所占体积的精确下限和上限。这可能有未来的应用程序,以确定癌症肿瘤的大小,或在一个机构的空隙,或在骨质疏松症的骨孔隙度。在第三个方向,将开发新的数学近似的两种不同的材料之间的界面处的缺陷的物理效应,这是预期将在新的复合材料的实际设计中使用。该奖项将帮助培养博士后助理和研究生在跨学科研究领域。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Graeme Milton其他文献
Graeme Milton的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Graeme Milton', 18)}}的其他基金
Structures, Composites, and Inhomogeneous Bodies
结构、复合材料和非均质体
- 批准号:
2107926 - 财政年份:2021
- 资助金额:
$ 86.18万 - 项目类别:
Continuing Grant
Structures, Metamaterials, Scattering, and Inverse Problems
结构、超材料、散射和反演问题
- 批准号:
1814854 - 财政年份:2018
- 资助金额:
$ 86.18万 - 项目类别:
Continuing Grant
Electrical Transport and Optical Properties of Inhomogeneous Media (ETOPIM) Conference Traveler Funding
非均匀介质的电传输和光学特性 (ETOPIM) 会议旅行者资助
- 批准号:
0629032 - 财政年份:2006
- 资助金额:
$ 86.18万 - 项目类别:
Standard Grant
The Response of Composites and Quasiconvexity
复合材料的响应和拟凸性
- 批准号:
0411035 - 财政年份:2004
- 资助金额:
$ 86.18万 - 项目类别:
Standard Grant
The macroscopic response of composites
复合材料的宏观响应
- 批准号:
0108626 - 财政年份:2001
- 资助金额:
$ 86.18万 - 项目类别:
Continuing Grant
The Macroscopic Response of Materials
材料的宏观响应
- 批准号:
9803748 - 财政年份:1998
- 资助金额:
$ 86.18万 - 项目类别:
Continuing Grant
University-Industry Cooperative Research Programs in the Mathematical Sciences: Electrical and Magnetic Properties ofComposite Materials
数学科学产学合作研究项目:复合材料的电学和磁学性质
- 批准号:
9629692 - 财政年份:1996
- 资助金额:
$ 86.18万 - 项目类别:
Standard Grant
Mathematical Sciences: Microstructure and its Influence on Composite Material Properties
数学科学:微观结构及其对复合材料性能的影响
- 批准号:
9501025 - 财政年份:1995
- 资助金额:
$ 86.18万 - 项目类别:
Continuing Grant
相似国自然基金
新型简化Inverse Lax-Wendroff方法的发展与应用
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于高阶格式的Inverse Lax-Wendroff方法及其稳定性分析
- 批准号:11801143
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Statistical aspects of non-linear inverse problems
非线性反问题的统计方面
- 批准号:
EP/Y030249/1 - 财政年份:2024
- 资助金额:
$ 86.18万 - 项目类别:
Research Grant
Travel: US Participation at the 11th International Conference on Inverse Problems in Engineering
出差:美国参加第11届工程反问题国际会议
- 批准号:
2347919 - 财政年份:2024
- 资助金额:
$ 86.18万 - 项目类别:
Standard Grant
Understanding, Predicting and Controlling AI Hallucination in Diffusion Models for Image Inverse Problems
理解、预测和控制图像逆问题扩散模型中的 AI 幻觉
- 批准号:
2906295 - 财政年份:2024
- 资助金额:
$ 86.18万 - 项目类别:
Studentship
Development of effective and accurate non-conventional solution methods for shape inverse problems: theory and numerics
开发有效且准确的形状反问题非常规求解方法:理论和数值
- 批准号:
23K13012 - 财政年份:2023
- 资助金额:
$ 86.18万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Conference: CBMS Conference: Inverse Problems and Nonlinearity
会议:CBMS 会议:反问题和非线性
- 批准号:
2329399 - 财政年份:2023
- 资助金额:
$ 86.18万 - 项目类别:
Standard Grant
Forward and Inverse Problems for Topological Insulators and Kinetic Equations
拓扑绝缘体和动力学方程的正逆问题
- 批准号:
2306411 - 财政年份:2023
- 资助金额:
$ 86.18万 - 项目类别:
Standard Grant
Gaussian process regression for Bayesian inverse problems
贝叶斯逆问题的高斯过程回归
- 批准号:
EP/X01259X/1 - 财政年份:2023
- 资助金额:
$ 86.18万 - 项目类别:
Research Grant
LEAPS-MPS: Splitting All-At-Once Approach to Inverse Medium Scattering Problems
LEAPS-MPS:解决逆介质散射问题的一次性分裂方法
- 批准号:
2316843 - 财政年份:2023
- 资助金额:
$ 86.18万 - 项目类别:
Standard Grant
Collaborative Research: Breaking the 1D barrier in radiative transfer: Fast, low-memory numerical methods for enabling inverse problems and machine learning emulators
合作研究:打破辐射传输中的一维障碍:用于实现逆问题和机器学习模拟器的快速、低内存数值方法
- 批准号:
2324369 - 财政年份:2023
- 资助金额:
$ 86.18万 - 项目类别:
Standard Grant
Collaborative Research: Breaking the 1D barrier in radiative transfer: Fast, low-memory numerical methods for enabling inverse problems and machine learning emulators
合作研究:打破辐射传输中的一维障碍:用于实现逆问题和机器学习模拟器的快速、低内存数值方法
- 批准号:
2324368 - 财政年份:2023
- 资助金额:
$ 86.18万 - 项目类别:
Standard Grant