Probing Hopping Conduction in Long, Pi-Conjugated Molecular Wires Assembled by Click Chemistry
探测通过点击化学组装的长π共轭分子线中的跳跃传导
基本信息
- 批准号:1213876
- 负责人:
- 金额:$ 42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-09-01 至 2015-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In this award sponsored by the Macromolecular, Supramolecular and Nanochemistry Program of the NSF, Prof. Dan Frisbie of the University of Minnesota and his students aim to understand how pai-conjugated molecules conduct electricity. In particular, their goal is to connect pi-conjugated molecules between metal electrodes and to probe conduction in the "hopping regime" in which electrons are injected into the molecular orbitals and hop from site-to-site along the molecular backbone, driven by the potential difference between the metal contacts. Building and characterizing the conduction of these structures will allow a better understanding of how molecular architecture impacts electrical conductivity in molecules. It will also allow useful electronic functions (e.g. current rectification) to be built into the molecular wires, which may enable new nanoelectronic applications. The experimental approach involves building pi-conjugated molecular wires from metal electrodes using sequential "click chemistry" reactions to connect monomers in a step-wise fashion. This chemistry allows the syntheses of molecular wires that are tens of nanometers in length with simultaneous control of the wire architecture on 1 nanometer length scales. Wires will be made with many different chemical functionalities, including redox-active sites, and with cascades of energy levels that can facilitate uni-directional electron transport (i.e., current rectification). After synthesis, the metal electrodes bearing oriented assemblies of wires will be inserted into an atomic force microscope (AFM), where the microscope probe tip will be brought into contact with the wire assembly with a controlled, nano-newton compressive load. In this manner, the AFM functions as an electrical probe station. Voltages applied between the metal AFM tip and the metal substrate drive current through the wires and the current-voltage (I-V) characteristics of the wires will be measured. The I-V characteristics will be recorded as a function of molecular length, chemical functionality and temperature. Analysis of this information will be used to create a more complete understanding of structure-conduction relationships in conducting molecules.The broader impacts of this proposal will be in the training of graduate students and undergraduates in important emerging areas of chemistry and nanoscience. In particular students will develop skills in molecular synthesis, structure characterization, atomic force microscopy, and electrical measurements. They will also develop a more complete physical understanding of the physical principles involved in electrical conduction in molecules and nanoelectronics, more generally. In addition, this grant will offer summer research opportunities for three high school students from the Twin Cities metropolitan area, exposing them to scientific research at an early stage and positively impacting their understanding of chemical concepts.
在这个由NSF的大分子,超分子和纳米化学计划赞助的奖项中,明尼苏达大学的Dan Frisbie教授和他的学生旨在了解pai共轭分子如何导电。特别是,他们的目标是连接金属电极之间的π共轭分子,并探测“跳跃状态”中的传导,其中电子被注入分子轨道并沿着分子骨架从一个位置跳到另一个位置,这是由金属触点之间的电势差驱动的。构建和表征这些结构的导电性将有助于更好地理解分子结构如何影响分子的导电性。它还将允许有用的电子功能(例如电流整流)被构建到分子线中,这可能使新的纳米电子应用成为可能。实验方法涉及使用顺序的“点击化学”反应从金属电极构建π共轭分子线,以逐步的方式连接单体。这种化学允许合成几十纳米长的分子线,同时控制1纳米长度尺度上的线结构。导线将被制成具有许多不同的化学功能,包括氧化还原活性位点,并且具有可以促进单向电子传输的能级级联(即,电流整流)。 在合成之后,将承载取向的线组件的金属电极插入到原子力显微镜(AFM)中,其中将使显微镜探针尖端与具有受控的纳牛顿压缩载荷的线组件接触。 以这种方式,AFM用作电探针台。施加在金属AFM针尖和金属衬底之间的电压驱动电流通过导线,并且将测量导线的电流-电压(I-V)特性。I-V特性将被记录为分子长度、化学官能度和温度的函数。对这些信息的分析将被用来更全面地理解导电分子的结构-导电关系,这一提议的更广泛影响将是对化学和纳米科学重要新兴领域的研究生和本科生的培训。特别是学生将发展在分子合成,结构表征,原子力显微镜和电气测量的技能。他们还将开发一个更完整的物理理解的物理原理涉及分子和纳米电子学中的导电,更普遍。此外,这笔赠款将为来自双城大都市区的三名高中生提供夏季研究机会,使他们在早期阶段接触科学研究,并积极影响他们对化学概念的理解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel Frisbie其他文献
Designing a robust single-molecule switch
设计稳健的单分子开关
- DOI:
10.1126/science.aag0827 - 发表时间:
2016 - 期刊:
- 影响因子:56.9
- 作者:
Daniel Frisbie - 通讯作者:
Daniel Frisbie
Daniel Frisbie的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel Frisbie', 18)}}的其他基金
Conductance Isotope Effect: A Chemical Tool to Explore the Microscopic Nature of Polarons in Pi-Conjugated Molecular Wires
电导同位素效应:探索 Pi 共轭分子线中极化子微观性质的化学工具
- 批准号:
2304763 - 财政年份:2023
- 资助金额:
$ 42万 - 项目类别:
Standard Grant
Quantitative Analysis of Molecular Conductance in Molecular Junctions
分子连接中分子电导的定量分析
- 批准号:
2003199 - 财政年份:2020
- 资助金额:
$ 42万 - 项目类别:
Standard Grant
Correlating Structural and Electronic Disorder in Organic Semiconductor Single Crystals
有机半导体单晶中结构和电子无序的关联
- 批准号:
1806419 - 财政年份:2018
- 资助金额:
$ 42万 - 项目类别:
Continuing Grant
Polaron and Spin Transport in Nanoscale Molecular Junctions
纳米级分子结中的极化子和自旋输运
- 批准号:
1708173 - 财政年份:2017
- 资助金额:
$ 42万 - 项目类别:
Standard Grant
Development of a New Transistor for Flexible Circuits
开发用于柔性电路的新型晶体管
- 批准号:
1407473 - 财政年份:2014
- 资助金额:
$ 42万 - 项目类别:
Standard Grant
Relating Structure and Electrostatic Potentials in Organic Semiconductor Thin Films
有机半导体薄膜的结构和静电势的关系
- 批准号:
1105031 - 财政年份:2011
- 资助金额:
$ 42万 - 项目类别:
Continuing Grant
Nanoprobing Structural and Electrostatic Complexity in Organic Semiconductor Thin Films
有机半导体薄膜中的纳米探测结构和静电复杂性
- 批准号:
0706011 - 财政年份:2008
- 资助金额:
$ 42万 - 项目类别:
Continuing Grant
Spectroscopy and Charge Transport in Metal-Molecule-Metal Junctions
金属-分子-金属结中的光谱学和电荷传输
- 批准号:
0616427 - 财政年份:2006
- 资助金额:
$ 42万 - 项目类别:
Continuing Grant
Probing Contact Effects in Molecular Junctions
探测分子连接中的接触效应
- 批准号:
0315165 - 财政年份:2003
- 资助金额:
$ 42万 - 项目类别:
Continuing Grant
Nanoprobing Electrical Properties of Organic Semiconductors and Molecular Assemblies
有机半导体和分子组装体的纳米探测电学性质
- 批准号:
0084404 - 财政年份:2000
- 资助金额:
$ 42万 - 项目类别:
Continuing Grant
相似国自然基金
基于surface hopping方法探索有机半导体中激子解体机制
- 批准号:LY19A040007
- 批准年份:2018
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Elucidation of surface proton hopping conduction mechanism using neutron quasi-elastic scattering measurements
使用中子准弹性散射测量阐明表面质子跳跃传导机制
- 批准号:
23K17937 - 财政年份:2023
- 资助金额:
$ 42万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Realization of efficient intramolecular hopping transport in long pi-conjugated systems and its-based novel functions
长π共轭体系中高效分子内跳跃传输的实现及其新功能
- 批准号:
23K17947 - 财政年份:2023
- 资助金额:
$ 42万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Discipline Hopping for Discovery Science
探索科学的学科跳跃
- 批准号:
NE/X017656/1 - 财政年份:2022
- 资助金额:
$ 42万 - 项目类别:
Research Grant
Discipline Hopping for Discovery Science
探索科学的学科跳跃
- 批准号:
NE/X018288/1 - 财政年份:2022
- 资助金额:
$ 42万 - 项目类别:
Research Grant
NERC Discipline Hopping for Discovery Science 2022
NERC 2022 年发现科学学科跳跃
- 批准号:
NE/X018091/1 - 财政年份:2022
- 资助金额:
$ 42万 - 项目类别:
Research Grant
NERC Discipline Hopping 2022_23
NERC 纪律跳跃 2022_23
- 批准号:
NE/X018334/1 - 财政年份:2022
- 资助金额:
$ 42万 - 项目类别:
Research Grant
Strathclyde Discipline Hopping for Discovery Science 2022-23
斯特拉斯克莱德学科跳跃发现科学 2022-23
- 批准号:
NE/X017206/1 - 财政年份:2022
- 资助金额:
$ 42万 - 项目类别:
Research Grant
Discipline Hopping for Discovery Science (UoBirmingham)
探索科学学科跳跃(伯明翰大学)
- 批准号:
NE/X017559/1 - 财政年份:2022
- 资助金额:
$ 42万 - 项目类别:
Research Grant
University of Edinburgh: Discipline Hopping for Discovery Science 2022/23
爱丁堡大学:2022/23 发现科学学科跳跃
- 批准号:
NE/X018261/1 - 财政年份:2022
- 资助金额:
$ 42万 - 项目类别:
Research Grant
Discipline Hopping for Discovery Science 2022/23
探索科学的学科跳跃 2022/23
- 批准号:
NE/X018342/1 - 财政年份:2022
- 资助金额:
$ 42万 - 项目类别:
Research Grant














{{item.name}}会员




