Relating Structure and Electrostatic Potentials in Organic Semiconductor Thin Films
有机半导体薄膜的结构和静电势的关系
基本信息
- 批准号:1105031
- 负责人:
- 金额:$ 40.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-09-01 至 2014-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
TECHNICAL SUMMARY: In this renewal proposal to the Solid State and Materials Chemistry Program, in the NSF Division of Materials Research, the Principal Investigators (PIs) will continue their experimental efforts to uncover fundamental microstructure-property relationships in organic semiconductors. In particular, the goal is to probe the connection between film structure and surface electrostatic potential. Surface potentials impact charge transport at interfaces and thus are directly relevant to the performance of organic electronic devices. For example, in a thin film transistor (TFT) the surface potential at the organic semiconductor/insulator interface determines the charge concentration, and the gradient in the surface potential determines the direction of carrier flow. Surface potentials reflect many factors associated with surfaces (or interfaces) including crystal structures, electronic energy levels, defects, dipoles, fixed charges, contaminants, and illumination conditions. The PIs will use high resolution Electric Force Microscopy (EFM) and Kelvin Probe Force Microscopy (KFM) to measure and map surface potentials in organic semiconductor films, and to correlate surface potential domains and gradients with structural features. The work is designed to address a number of questions including: How do epitaxial growth modes and grain morphologies in organic semiconductor films impact surface potentials? Where do trapped charges reside in organic semiconductors and can the trapping zones be correlated with surface potential peaks or valleys? A principal outcome of this work will be significantly improved understanding of electrostatic complexity in organic semiconductor films and interfaces and correlation of this complexity with microstructure. Films and interfaces that are central to the operation of OTFTs and organic solar cells will be investigated, so that the relevance of the results will be immediately apparent to the organic electronics research community. NON-TECHNICAL SUMMARY: Organic semiconductors are an important class of thin film electronic materials that have many attractive properties including efficient luminescence, liquid phase processability, and compatibility with plastic substrates; these advantages are driving new applications ranging from flexible, rugged e-readers and smart cards to low cost solar cells. Organic light emitting diodes (OLEDs), in particular, have attained performance suitable for display technologies and are undergoing commercialization, and there are also exciting prospects for organic semiconductors in biosensors and printed electronics. Importantly, the development of a mature organic semiconductor technology hinges on thorough understanding of structure-processing-performance relationships. The overarching goal of this proposal is to advance the materials science of organic semiconductors by uncovering fundamental microstructure-property correlations in model organic semiconductor systems. The work will be carried out by two University of Minnesota faculty researchers in collaboration with PhD students. Thus, a principal broader impact will be graduate level training of students in materials science and engineering. In addition, the PIs will provide summer research experiences for one Minneapolis area high school student and one minority undergraduate each summer over the course of the award. The minority undergraduate will be selected from a pool of science and engineering sophomores and juniors at the University of Texas Pan American (UTPA), a largely Hispanic serving institution. For student selection, the PIs will be assisted by a UTPA faculty member who has performed summer research previously at Minnesota. The goal will be to excite these young potential scientists about the opportunities in materials research, while providing them real hands-on technical training. The PIs will also continue to provide demonstrations of scanning probe techniques to K-12 students, as they have done under their previous award.
技术概要:在NSF材料研究部的固态和材料化学计划的更新提案中,主要研究人员(PI)将继续他们的实验努力,以揭示有机半导体中基本的微观结构-性质关系。特别是,我们的目标是探测膜结构和表面静电势之间的连接。表面电位影响界面处的电荷传输,因此与有机电子器件的性能直接相关。例如,在薄膜晶体管(TFT)中,有机半导体/绝缘体界面处的表面电势决定电荷浓度,并且表面电势的梯度决定载流子流动的方向。表面电位反映了与表面(或界面)相关的许多因素,包括晶体结构、电子能级、缺陷、偶极子、固定电荷、污染物和照明条件。PI将使用高分辨率电子力显微镜(EFM)和开尔文探针力显微镜(KFM)测量和绘制有机半导体薄膜的表面电位,并将表面电位域和梯度与结构特征相关联。这项工作的目的是解决一些问题,包括:如何在有机半导体薄膜的外延生长模式和晶粒形态的影响表面电位?在有机半导体中,俘获电荷存在于何处?俘获区是否与表面电势峰或谷相关?这项工作的主要成果将显着提高理解的静电复杂性在有机半导体薄膜和界面和这种复杂性与微观结构的相关性。薄膜和界面是OTFT和有机太阳能电池的操作的核心将被调查,使结果的相关性将立即明显的有机电子研究界。非技术性总结:有机半导体是一类重要的薄膜电子材料,具有许多吸引人的特性,包括高效发光,液相加工性和与塑料基板的兼容性;这些优势正在推动从灵活,坚固的电子阅读器和智能卡到低成本太阳能电池的新应用。特别是有机发光二极管(OLED)已经获得了适合于显示技术的性能,并且正在进行商业化,并且有机半导体在生物传感器和印刷电子中也有令人兴奋的前景。重要的是,成熟的有机半导体技术的发展取决于对结构-加工-性能关系的透彻理解。该提案的总体目标是通过揭示模型有机半导体系统中基本的微观结构-性质相关性来推进有机半导体的材料科学。这项工作将由明尼苏达大学的两名研究人员与博士生合作进行。因此,一个主要的更广泛的影响将是研究生水平的学生在材料科学和工程的培训。此外,PI将提供一个明尼阿波利斯地区的高中学生和一个少数民族本科生每年夏天在该奖项的过程中夏季研究经验。少数民族本科生将从德克萨斯大学泛美分校(UTPA)的科学和工程专业的学生和大三学生中挑选出来,UTPA是一个主要由西班牙裔服务的机构。对于学生的选择,PI将由UTPA教师谁曾在明尼苏达州进行夏季研究协助。我们的目标是激发这些年轻的潜在科学家对材料研究的机会,同时为他们提供真实的动手技术培训。PI还将继续向K-12学生提供扫描探针技术的演示,就像他们在以前的奖项中所做的那样。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel Frisbie其他文献
Designing a robust single-molecule switch
设计稳健的单分子开关
- DOI:
10.1126/science.aag0827 - 发表时间:
2016 - 期刊:
- 影响因子:56.9
- 作者:
Daniel Frisbie - 通讯作者:
Daniel Frisbie
Daniel Frisbie的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel Frisbie', 18)}}的其他基金
Conductance Isotope Effect: A Chemical Tool to Explore the Microscopic Nature of Polarons in Pi-Conjugated Molecular Wires
电导同位素效应:探索 Pi 共轭分子线中极化子微观性质的化学工具
- 批准号:
2304763 - 财政年份:2023
- 资助金额:
$ 40.99万 - 项目类别:
Standard Grant
Quantitative Analysis of Molecular Conductance in Molecular Junctions
分子连接中分子电导的定量分析
- 批准号:
2003199 - 财政年份:2020
- 资助金额:
$ 40.99万 - 项目类别:
Standard Grant
Correlating Structural and Electronic Disorder in Organic Semiconductor Single Crystals
有机半导体单晶中结构和电子无序的关联
- 批准号:
1806419 - 财政年份:2018
- 资助金额:
$ 40.99万 - 项目类别:
Continuing Grant
Polaron and Spin Transport in Nanoscale Molecular Junctions
纳米级分子结中的极化子和自旋输运
- 批准号:
1708173 - 财政年份:2017
- 资助金额:
$ 40.99万 - 项目类别:
Standard Grant
Development of a New Transistor for Flexible Circuits
开发用于柔性电路的新型晶体管
- 批准号:
1407473 - 财政年份:2014
- 资助金额:
$ 40.99万 - 项目类别:
Standard Grant
Probing Hopping Conduction in Long, Pi-Conjugated Molecular Wires Assembled by Click Chemistry
探测通过点击化学组装的长π共轭分子线中的跳跃传导
- 批准号:
1213876 - 财政年份:2012
- 资助金额:
$ 40.99万 - 项目类别:
Standard Grant
Nanoprobing Structural and Electrostatic Complexity in Organic Semiconductor Thin Films
有机半导体薄膜中的纳米探测结构和静电复杂性
- 批准号:
0706011 - 财政年份:2008
- 资助金额:
$ 40.99万 - 项目类别:
Continuing Grant
Spectroscopy and Charge Transport in Metal-Molecule-Metal Junctions
金属-分子-金属结中的光谱学和电荷传输
- 批准号:
0616427 - 财政年份:2006
- 资助金额:
$ 40.99万 - 项目类别:
Continuing Grant
Probing Contact Effects in Molecular Junctions
探测分子连接中的接触效应
- 批准号:
0315165 - 财政年份:2003
- 资助金额:
$ 40.99万 - 项目类别:
Continuing Grant
Nanoprobing Electrical Properties of Organic Semiconductors and Molecular Assemblies
有机半导体和分子组装体的纳米探测电学性质
- 批准号:
0084404 - 财政年份:2000
- 资助金额:
$ 40.99万 - 项目类别:
Continuing Grant
相似海外基金
Innovation in manufacturing technology using electrostatic adsorption devices with surface flexibility derived from fine hair structure
利用静电吸附装置的制造技术创新,该装置具有源自细毛结构的表面柔韧性
- 批准号:
16H04297 - 财政年份:2016
- 资助金额:
$ 40.99万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Structure-based Simulation of Riboswitches: Electrostatic Effects
基于结构的核糖开关模拟:静电效应
- 批准号:
9034610 - 财政年份:2015
- 资助金额:
$ 40.99万 - 项目类别:
Structure-based Simulation of Riboswitches: Electrostatic Effects
基于结构的核糖开关模拟:静电效应
- 批准号:
10389070 - 财政年份:2015
- 资助金额:
$ 40.99万 - 项目类别:
Structure-based Simulation of Riboswitches: Electrostatic Effects
基于结构的核糖开关模拟:静电效应
- 批准号:
9272918 - 财政年份:2015
- 资助金额:
$ 40.99万 - 项目类别:
Structure-based Simulation of Riboswitches: Electrostatic Effects
基于结构的核糖开关模拟:静电效应
- 批准号:
8825309 - 财政年份:2015
- 资助金额:
$ 40.99万 - 项目类别:
Structure-based Simulation of Riboswitches: Electrostatic Effects
基于结构的核糖开关模拟:静电效应
- 批准号:
10398108 - 财政年份:2015
- 资助金额:
$ 40.99万 - 项目类别:
Structure-based Simulation of Riboswitches: Electrostatic Effects
基于结构的核糖开关模拟:静电效应
- 批准号:
10612359 - 财政年份:2015
- 资助金额:
$ 40.99万 - 项目类别:
Hierarchical structure of soft matter induced by electrostatic interaction
静电相互作用引起的软物质的层次结构
- 批准号:
23244088 - 财政年份:2011
- 资助金额:
$ 40.99万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Modeling and consideration on electrostatic-structural-fluid coupled vibration of MEMS structure
MEMS结构静电-结构-流体耦合振动的建模与思考
- 批准号:
23560263 - 财政年份:2011
- 资助金额:
$ 40.99万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Structure optimization of a field emitter with a built-in micro electrostatic lens
内置微静电透镜场发射体的结构优化
- 批准号:
21310083 - 财政年份:2009
- 资助金额:
$ 40.99万 - 项目类别:
Grant-in-Aid for Scientific Research (B)