Development of a New Transistor for Flexible Circuits
开发用于柔性电路的新型晶体管
基本信息
- 批准号:1407473
- 负责人:
- 金额:$ 35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-07-01 至 2018-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Abstract Title: Development of a New Transistor for Flexible CircuitsNon-technical Abstract. This proposal describes a collaborative, interdisciplinary effort at the University of Minnesota to understand, design, fabricate and test a new class of switching devices for flexible electronics, namely electrolyte gated transistors (EGTs). The two Principal Investigators, Frisbie (chemical engineering and materials science) and Ruden (electrical and computer engineering), have a strong track record of scientific collaboration in transistor development extending over the past ten years. In this proposal, they again join their respective experimental and computational expertise to understand and develop EGTs as a novel class of devices for applications such as flexible displays and wearable sensors. This project will produce experimental and theoretical results that advance the field of flexible electronics; it will support the training of PhD students and undergraduates, and it will also produce educational aids for teaching about electronic materials and devices at the high school level.Technical Abstract. In prior work by the principal investigators (PIs) it has been established that electrolyte gated transistors (EGTs) have many advantages for building circuits on impact resistant, bendable plastic substrates. These advantages include: sub-2 V operation compatible with thin film batteries, excellent ON/OFF current ratios of order 106, complementary circuit designs (i.e., p-type and n-type channels), high ON-state transconductances 1 ÝS/Ým, fast switching speeds approaching 1 MHz, excellent bias stress stability, good air stability without encapsulation, and easy, near-room-temperature fabrication procedures compatible with plastic. These very promising characteristics motivate the PIs to continue to improve EGTs and to develop accurate computational models of their operation that both reflect a deep understanding of the device physics, and facilitate device design for integration into complete circuits. There are a number of challenges associated with understanding EGTs because the gate insulator layer contains mobile ions. For example, the mechanism of EGT switching depends on whether the semiconductor channel is permeable or impermeable to ions, and new transistor models must be constructed to take account of these differences. In addition, the operation of EGTs, and in particular the channel carrier mobility, depends on the type of mobile ions employed in the gate/electrolyte/ semiconductor stack. These effects, and many others, must be understood in order to optimize EGT performance. EGTs also open up substantial opportunities for changing circuit fabrication paradigms in flexible electronics. In particular, the ability to make EGTs entirely from electronically functional liquid inks has inspired the PIs to propose a new, self-aligning fabrication strategy based on nanoimprint lithography and capillary flow. This process, termed SCALE (for Self-Aligned Capillary Flow Lithography for Electronics), will be extensively investigated and developed in connection with fabrication of p-type and n-type EGTs. The PIs will also expand the materials sets compatible with EGT architectures, e.g., new gate electrolytes based on ion gels and ceramic ion conductors, and the incorporation of both organic semiconductors and amorphous oxides as the channel materials.The broader impacts of this proposal will be in human resource development and the creation of educational tools for teaching semiconductor electronics and materials science. Specifically, this grant will support the training of PhD students and undergraduates in the fabrication and characterization of electronic devices, new microelectronics processing methods, novel device architectures, and sensors, i.e., areas that are important to national workforce development. The PIs will also develop prototype ¡§Flexible Circuit Fabrication Kits¡¨ that will allow high school science students to explore the interplay between microelectronics and materials. These kits will include embossed plastic substrates and non-toxic, environmentally friendly electronic inks that can be easily delivered to the substrates to create circuits that can then be tested using simple supplies such as a battery and a resistance meter.
摘要标题:柔性电路用新型晶体管的开发非技术摘要。该提案描述了明尼苏达大学的跨学科合作努力,以了解,设计,制造和测试一类新的柔性电子开关器件,即电解质门控晶体管(EGT)。两位首席研究员Frisbie(化学工程和材料科学)和Ruden(电气和计算机工程)在过去十年中在晶体管开发方面有着良好的科学合作记录。在这项提案中,他们再次结合各自的实验和计算专业知识,以理解和开发EGT作为一类新型设备,用于柔性显示器和可穿戴传感器等应用。该项目将产生推进柔性电子领域的实验和理论成果,支持博士生和本科生的培养,并将为高中阶段的电子材料和设备教学制作教育辅助工具。技术摘要在主要研究者(PI)的先前工作中,已经确定电解质门控晶体管(EGT)对于在抗冲击、可弯曲的塑料基板上构建电路具有许多优点。这些优势包括:与薄膜电池兼容的低于2 V的操作,106量级的优异的ON/OFF电流比,互补的电路设计(即,p型和n型沟道)、高导通态跨导1 ≥ S/≥ m、接近1 MHz的快速开关速度、出色的偏置应力稳定性、无需封装的良好空气稳定性以及与塑料兼容的简单、近室温制造工艺。这些非常有前途的特性促使PI继续改进EGT并开发其操作的精确计算模型,这些模型既反映了对器件物理的深刻理解,又促进了器件设计,以便集成到完整的电路中。由于栅极绝缘体层含有移动的离子,因此存在与理解EGT相关联的许多挑战。例如,EGT开关的机制取决于半导体沟道对离子是可渗透的还是不可渗透的,必须构建新的晶体管模型来考虑这些差异。此外,EGT的操作,特别是沟道载流子迁移率,取决于栅极/电解质/半导体叠层中采用的移动的离子的类型。为了优化EGT性能,必须了解这些效应和许多其他效应。EGT还为改变柔性电子产品中的电路制造范例开辟了大量机会。特别是,完全由电子功能液体油墨制造EGT的能力激发了PI提出一种基于纳米压印光刻和毛细管流动的新的自对准制造策略。这个过程,被称为SCALE(电子自对准毛细管流光刻),将被广泛研究和开发与p型和n型EGT的制造。PI还将扩展与EGT架构兼容的材料集,例如,基于离子凝胶和陶瓷离子导体的新型栅极电解质,以及有机半导体和非晶氧化物作为沟道材料的结合,这一提议的更广泛影响将是人力资源开发和创建用于教授半导体电子学和材料科学的教育工具。具体而言,该补助金将支持博士生和本科生在电子设备的制造和表征,新的微电子处理方法,新颖的设备架构和传感器,即,对国家劳动力发展至关重要的领域。PI还将开发原型“柔性电路制造工具包”,使高中理科学生能够探索微电子和材料之间的相互作用。这些套件将包括压花塑料基板和无毒,环保的电子墨水,可以很容易地交付到基板,以创建电路,然后可以使用简单的供应,如电池和电阻计进行测试。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel Frisbie其他文献
Designing a robust single-molecule switch
设计稳健的单分子开关
- DOI:
10.1126/science.aag0827 - 发表时间:
2016 - 期刊:
- 影响因子:56.9
- 作者:
Daniel Frisbie - 通讯作者:
Daniel Frisbie
Daniel Frisbie的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel Frisbie', 18)}}的其他基金
Conductance Isotope Effect: A Chemical Tool to Explore the Microscopic Nature of Polarons in Pi-Conjugated Molecular Wires
电导同位素效应:探索 Pi 共轭分子线中极化子微观性质的化学工具
- 批准号:
2304763 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Quantitative Analysis of Molecular Conductance in Molecular Junctions
分子连接中分子电导的定量分析
- 批准号:
2003199 - 财政年份:2020
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Correlating Structural and Electronic Disorder in Organic Semiconductor Single Crystals
有机半导体单晶中结构和电子无序的关联
- 批准号:
1806419 - 财政年份:2018
- 资助金额:
$ 35万 - 项目类别:
Continuing Grant
Polaron and Spin Transport in Nanoscale Molecular Junctions
纳米级分子结中的极化子和自旋输运
- 批准号:
1708173 - 财政年份:2017
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Probing Hopping Conduction in Long, Pi-Conjugated Molecular Wires Assembled by Click Chemistry
探测通过点击化学组装的长π共轭分子线中的跳跃传导
- 批准号:
1213876 - 财政年份:2012
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Relating Structure and Electrostatic Potentials in Organic Semiconductor Thin Films
有机半导体薄膜的结构和静电势的关系
- 批准号:
1105031 - 财政年份:2011
- 资助金额:
$ 35万 - 项目类别:
Continuing Grant
Nanoprobing Structural and Electrostatic Complexity in Organic Semiconductor Thin Films
有机半导体薄膜中的纳米探测结构和静电复杂性
- 批准号:
0706011 - 财政年份:2008
- 资助金额:
$ 35万 - 项目类别:
Continuing Grant
Spectroscopy and Charge Transport in Metal-Molecule-Metal Junctions
金属-分子-金属结中的光谱学和电荷传输
- 批准号:
0616427 - 财政年份:2006
- 资助金额:
$ 35万 - 项目类别:
Continuing Grant
Probing Contact Effects in Molecular Junctions
探测分子连接中的接触效应
- 批准号:
0315165 - 财政年份:2003
- 资助金额:
$ 35万 - 项目类别:
Continuing Grant
Nanoprobing Electrical Properties of Organic Semiconductors and Molecular Assemblies
有机半导体和分子组装体的纳米探测电学性质
- 批准号:
0084404 - 财政年份:2000
- 资助金额:
$ 35万 - 项目类别:
Continuing Grant
相似海外基金
New Transistor Model for Transition from Moderate to Strong Inversion and it's Applications for Design of CMOS Integrated Circuits with Fast Load and Supply Transients
从中度反转到强反转过渡的新晶体管模型及其在具有快速负载和电源瞬变的 CMOS 集成电路设计中的应用
- 批准号:
RGPIN-2017-03719 - 财政年份:2021
- 资助金额:
$ 35万 - 项目类别:
Discovery Grants Program - Individual
Exploration of new-structure vertical gate-all-around transistor and its properties
新型结构垂直环栅晶体管及其性能探索
- 批准号:
20K14772 - 财政年份:2020
- 资助金额:
$ 35万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
New Transistor Model for Transition from Moderate to Strong Inversion and it's Applications for Design of CMOS Integrated Circuits with Fast Load and Supply Transients
从中度反转到强反转过渡的新晶体管模型及其在具有快速负载和电源瞬变的 CMOS 集成电路设计中的应用
- 批准号:
RGPIN-2017-03719 - 财政年份:2020
- 资助金额:
$ 35万 - 项目类别:
Discovery Grants Program - Individual
New Transistor Model for Transition from Moderate to Strong Inversion and it's Applications for Design of CMOS Integrated Circuits with Fast Load and Supply Transients
从中度反转到强反转过渡的新晶体管模型及其在具有快速负载和电源瞬变的 CMOS 集成电路设计中的应用
- 批准号:
RGPIN-2017-03719 - 财政年份:2019
- 资助金额:
$ 35万 - 项目类别:
Discovery Grants Program - Individual
New Transistor Model for Transition from Moderate to Strong Inversion and it's Applications for Design of CMOS Integrated Circuits with Fast Load and Supply Transients
从中度反转到强反转过渡的新晶体管模型及其在具有快速负载和电源瞬变的 CMOS 集成电路设计中的应用
- 批准号:
RGPIN-2017-03719 - 财政年份:2018
- 资助金额:
$ 35万 - 项目类别:
Discovery Grants Program - Individual
New Transistor Model for Transition from Moderate to Strong Inversion and it's Applications for Design of CMOS Integrated Circuits with Fast Load and Supply Transients
从中度反转到强反转过渡的新晶体管模型及其在具有快速负载和电源瞬变的 CMOS 集成电路设计中的应用
- 批准号:
RGPIN-2017-03719 - 财政年份:2017
- 资助金额:
$ 35万 - 项目类别:
Discovery Grants Program - Individual
A new device concept: the photocatalytic transistor
新器件概念:光催化晶体管
- 批准号:
509625-2017 - 财政年份:2017
- 资助金额:
$ 35万 - 项目类别:
University Undergraduate Student Research Awards
E2CDA: Type II: A new non-volatile electrochemical transistor as an artificial synapse: device scaling studies
E2CDA:II 型:作为人工突触的新型非易失性电化学晶体管:器件缩放研究
- 批准号:
1739795 - 财政年份:2017
- 资助金额:
$ 35万 - 项目类别:
Continuing Grant
Low voltage operation of new functional circuits by a silicon single electron transistor and CMOS at room temperature
硅单电子晶体管和 CMOS 新型功能电路在室温下低压运行
- 批准号:
15H02247 - 财政年份:2015
- 资助金额:
$ 35万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Study and assessment of technical and commercial feasibility of a new Silicon Carbide (SiC) Bipolar Junction Transistor (BJT) technology for High Voltage DC (HVDC) electricity transmission for offshore renewables
研究和评估用于海上可再生能源高压直流 (HVDC) 输电的新型碳化硅 (SiC) 双极结晶体管 (BJT) 技术的技术和商业可行性
- 批准号:
131716 - 财政年份:2014
- 资助金额:
$ 35万 - 项目类别:
Feasibility Studies