Extending Sparse Optimization
扩展稀疏优化
基本信息
- 批准号:1216318
- 负责人:
- 金额:$ 24.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-08-01 至 2016-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Rather than solving an optimization problem exactly, sparse optimization seeks approximate solutions that satisfy certain structural properties, such as few nonzeros in the solution vector. Sparse optimization problems and formulations are now recognized across a wide range of applications, and techniques for solving these problems draw on a large variety of algorithmic tools, old and new. This project aims to extend sparse optimization in two respects. First, work is proposed in application areas that can benefit from the sparse optimization perspective: machine learning and data mining at extreme scale, contact dynamics, object packing, medical image reconstruction, and derivative-free optimization. Algorithmic developments will target key problem formulations in these areas, paying particular attention to methods that can exploit parallel computer architectures and specialized hardware. Algorithmic techniques to be considered include stochastic approximation, randomized directions, augmented Lagrangian, and reduced-space search using higher-order information. Second, the project will use general frameworks to analyze such algorithmic ideas as manifold identification, continuation, first-order algorithms, inexactness, and convergence and complexity results. The general nature of these investigations will enable innovations to be spread across a wide range of formulations and applications. The field of optimization provides a vital framework for formulating, modeling, and solving problems in many application areas. In sparse optimization, we note that many applications require solutions with a special structure that is easy to specify, but hard to incorporate in traditional algorithms and models. Sparse optimization arises, for example, in reconstruction of signals and images, where we know that the signal should contain only a few frequencies, or that the image should look like a natural image rather than white noise. Important developments of the past few years have shown that the requirement of structure in solutions, rather than being a hindrance to efficient solution, can actually lead to more efficient formulations and faster methods. Notable successes have been achieved in such areas as compressed sensing and image denoising. This project will build on these successes by developing algorithms that can be leveraged in many new and existing applications of sparse optimization. In keeping with modern optimization research, a bevy of algorithmic techniques will be considered. Theory will be developed to support the use of these techniques in a wide range of contexts.
稀疏优化不是精确地解决优化问题,而是寻求满足某些结构属性的近似解,例如解向量中的几个非零值。稀疏优化问题和公式现在在广泛的应用中得到了认可,解决这些问题的技术借鉴了各种各样的算法工具,旧的和新的。本项目旨在从两个方面扩展稀疏优化。首先,提出了可以从稀疏优化角度受益的应用领域的工作:机器学习和极端规模的数据挖掘,接触动力学,对象包装,医学图像重建和无导数优化。数学发展将针对这些领域的关键问题公式,特别注意可以利用并行计算机体系结构和专用硬件的方法。要考虑的数学技术包括随机近似、随机方向、增广拉格朗日和使用高阶信息的缩减空间搜索。其次,本计画将使用一般架构来分析演算法的想法,例如流形辨识、延拓、一阶演算法、不精确性、收敛性与复杂性结果。这些研究的一般性质将使创新能够在广泛的配方和应用中传播。 优化领域为许多应用领域中的问题的制定、建模和解决提供了一个重要的框架。在稀疏优化中,我们注意到许多应用需要具有特殊结构的解决方案,这种结构很容易指定,但很难纳入传统的算法和模型。例如,稀疏优化出现在信号和图像的重建中,其中我们知道信号应该仅包含几个频率,或者图像应该看起来像自然图像而不是白色噪声。 过去几年的重要发展表明,解决方案中的结构要求,而不是成为有效解决方案的障碍,实际上可以导致更有效的配方和更快的方法。在压缩传感和图像去噪等领域取得了显著的成功。该项目将通过开发可以在许多新的和现有的稀疏优化应用中利用的算法来建立这些成功。为了与现代优化研究保持一致,将考虑一系列算法技术。理论将被开发,以支持在广泛的背景下使用这些技术。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stephen Wright其他文献
A Study into Certain Aspects of the Cost of Capital for Regulated Utilities in the U.K.
英国受监管公用事业公司资本成本某些方面的研究
- DOI:
- 发表时间:
2003 - 期刊:
- 影响因子:0
- 作者:
Stephen Wright;R. Mason;D. Miles - 通讯作者:
D. Miles
Lyme disease in the UK: clinical and laboratory features and response to treatment
- DOI:
10.7861/clinmedicine.10-5-454 - 发表时间:
2010-10-01 - 期刊:
- 影响因子:
- 作者:
Richard Dillon;Susan O’Connell;Stephen Wright - 通讯作者:
Stephen Wright
Novel hyperbranched polymers from transfer-dominated branching radical telomerisation (TBRT) of diacrylate taxogens
新型超支化聚合物来自二丙烯酸酯类紫杉烷前体的转移主导支化自由基端基聚合(TBRT)
- DOI:
10.1039/d5py00062a - 发表时间:
2025-02-21 - 期刊:
- 影响因子:3.900
- 作者:
Samuel Mckeating;Corinna Smith;Oliver Penrhyn-Lowe;Sean Flynn;Stephen Wright;Pierre Chambon;Andrew Dwyer;Steve Rannard - 通讯作者:
Steve Rannard
Internalism in the Epistemology of Testimony
- DOI:
10.1007/s10670-015-9729-y - 发表时间:
2015-03-05 - 期刊:
- 影响因子:0.900
- 作者:
Stephen Wright - 通讯作者:
Stephen Wright
Stephen Wright的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stephen Wright', 18)}}的其他基金
AF: Small: Bridging the Past and Present of Continuous Optimization for Learning
AF:小:连接持续优化学习的过去和现在
- 批准号:
2224213 - 财政年份:2022
- 资助金额:
$ 24.1万 - 项目类别:
Standard Grant
TRIPODS: Institute for Foundations of Data Science
TRIPODS:数据科学研究所
- 批准号:
2023239 - 财政年份:2020
- 资助金额:
$ 24.1万 - 项目类别:
Continuing Grant
TRIPODS: Institute for Foundations of Data Science
TRIPODS:数据科学研究所
- 批准号:
1740707 - 财政年份:2017
- 资助金额:
$ 24.1万 - 项目类别:
Standard Grant
US-Mexico Workshop on Optimization and its Applications
美国-墨西哥优化及其应用研讨会
- 批准号:
1031095 - 财政年份:2010
- 资助金额:
$ 24.1万 - 项目类别:
Standard Grant
RUI: Interdependence of Nutrient and Pheromone Sensing Pathways in Yeast
RUI:酵母中营养物质和信息素传感途径的相互依赖性
- 批准号:
0952519 - 财政年份:2010
- 资助金额:
$ 24.1万 - 项目类别:
Continuing Grant
International Symposium on Mathematical Programming 2009; Chicago, IL; August 2009
2009年数学规划国际研讨会;
- 批准号:
0937025 - 财政年份:2009
- 资助金额:
$ 24.1万 - 项目类别:
Standard Grant
Nonlinear Optimization: Algorithms, Software, Applications
非线性优化:算法、软件、应用
- 批准号:
0430504 - 财政年份:2004
- 资助金额:
$ 24.1万 - 项目类别:
Standard Grant
Collaborative Research: MW: Master-Worker Middleware for Grids
合作研究:MW:网格主从中间件
- 批准号:
0330538 - 财政年份:2003
- 资助金额:
$ 24.1万 - 项目类别:
Standard Grant
C-RUI: Development and Applications of a Novel Biosensor
C-RUI:新型生物传感器的开发与应用
- 批准号:
0216716 - 财政年份:2002
- 资助金额:
$ 24.1万 - 项目类别:
Continuing Grant
相似国自然基金
基于Sparse-Land模型的SAR图像噪声抑制与分割
- 批准号:60971128
- 批准年份:2009
- 资助金额:30.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: PPoSS: LARGE: Cross-layer Coordination and Optimization for Scalable and Sparse Tensor Networks (CROSS)
合作研究:PPoSS:LARGE:可扩展和稀疏张量网络的跨层协调和优化(CROSS)
- 批准号:
2316201 - 财政年份:2023
- 资助金额:
$ 24.1万 - 项目类别:
Standard Grant
Collaborative Research: PPoSS: LARGE: Cross-layer Coordination and Optimization for Scalable and Sparse Tensor Networks (CROSS)
合作研究:PPoSS:LARGE:可扩展和稀疏张量网络的跨层协调和优化(CROSS)
- 批准号:
2316203 - 财政年份:2023
- 资助金额:
$ 24.1万 - 项目类别:
Continuing Grant
Collaborative Research: PPoSS: LARGE: Cross-layer Coordination and Optimization for Scalable and Sparse Tensor Networks (CROSS)
合作研究:PPoSS:LARGE:可扩展和稀疏张量网络的跨层协调和优化(CROSS)
- 批准号:
2316202 - 财政年份:2023
- 资助金额:
$ 24.1万 - 项目类别:
Standard Grant
CAREER: Sparse Sampling and Reconstruction for Rendering Through Per-Scene Optimization
职业:通过每场景优化进行渲染的稀疏采样和重建
- 批准号:
2238193 - 财政年份:2023
- 资助金额:
$ 24.1万 - 项目类别:
Continuing Grant
Acceleration, Complexity and Implementation of Active Set Methods for Large-scale Sparse Nonlinear Optimization
大规模稀疏非线性优化的活跃集方法的加速、复杂性和实现
- 批准号:
2309549 - 财政年份:2023
- 资助金额:
$ 24.1万 - 项目类别:
Standard Grant
Collaborative Research: PPoSS: Planning: Cross-layer Coordination and Optimization for Scalable and Sparse Tensor Networks (CROSS)
合作研究:PPoSS:规划:可扩展和稀疏张量网络的跨层协调和优化(CROSS)
- 批准号:
2217028 - 财政年份:2022
- 资助金额:
$ 24.1万 - 项目类别:
Standard Grant
Collaborative Research: PPoSS: Planning: Cross-layer Coordination and Optimization for Scalable and Sparse Tensor Networks (CROSS)
合作研究:PPoSS:规划:可扩展和稀疏张量网络的跨层协调和优化(CROSS)
- 批准号:
2217086 - 财政年份:2022
- 资助金额:
$ 24.1万 - 项目类别:
Standard Grant
Learning Nonlinear Dynamics from Data Using Sparse Optimization and Compressed Sensing
使用稀疏优化和压缩感知从数据中学习非线性动力学
- 批准号:
RGPIN-2018-06135 - 财政年份:2022
- 资助金额:
$ 24.1万 - 项目类别:
Discovery Grants Program - Individual
Collaborative Research: Sparse Optimization for Machine Learning and Image/Signal Processing
协作研究:机器学习和图像/信号处理的稀疏优化
- 批准号:
2208386 - 财政年份:2022
- 资助金额:
$ 24.1万 - 项目类别:
Standard Grant
Collaborative Research: Sparse Optimization for Machine Learning and Image/Signal Processing
协作研究:机器学习和图像/信号处理的稀疏优化
- 批准号:
2208385 - 财政年份:2022
- 资助金额:
$ 24.1万 - 项目类别:
Standard Grant