New evolution equations of the joint response-excitation PDF for stochastic modeling: Theory and numerical methods

用于随机建模的联合响应激励 PDF 的新演化方程:理论和数值方法

基本信息

  • 批准号:
    1216437
  • 负责人:
  • 金额:
    $ 35.06万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-09-01 至 2016-08-31
  • 项目状态:
    已结题

项目摘要

New theory and corresponding numerical algorithms are proposed for addressing fundamental open questions in stochastic modeling of physical and biological systems, e.g., the curse-of-dimensionality, the lack of regularity and the long-time integration of stochastic systems. Such problems arise in applications involving processes with small relative correlation length or large number of random parameters, and for time-dependent nonlinear systems subject to uncertainty. The new equations are formulated in terms of the time-evolution of the joint probability density function (PDF) between the system's response and the stochastic excitation. In particular, functional integral methods are employed to determine new types of linear deterministic partial differential equations satisfied by the joint response-excitation PDF associated with the stochastic solution of nonlinear stochastic ordinary and partial differential equations. So far the theory is complete for nonlinear and for quasilinear first-order stochastic PDEs subject to random boundary conditions, random initial conditions or random forcing terms. For higher-order equations, such the stochastic wave equation or the Oberbeck-Boussinesq thermal convection equations, it is proposed to develop a new PDF method based on differential constraints for the PDF of the solution. It is proposed to investigate the theoretical and numerical effectiveness of this new approach for high-dimensional random systems, such as random flows subject to high-dimensional random boundary or initial conditions in bounded domains.Stochastic modeling and uncertainty quantification are important new directions in computational mathematics that will enable accurate predictions of physical and biological phenomena,in critical applications such as climate, energy and the design of new products. The proposed work will have significant and broad impact as it will set new rigorous foundations in uncertainty quantification, data assimilation and sensitivity analysis for many physical and biological systems. It will affect fundamentally the way we design new experiments and the type of questions that we can address, while the interaction between simulation and experiment will become more meaningful and more dynamic. This work will also aid in educating a new cadre of simulation scientists in this metadiscipline at the interface of computational mathematics and probability theory.
提出了新的理论和相应的数值算法,用于解决物理和生物系统随机建模中的基本开放问题,例如,随机系统的维数灾难性、缺乏规律性和长时间集成性。这样的问题出现在应用程序中涉及的过程与小的相对相关长度或大量的随机参数,并为时间依赖的非线性系统的不确定性。新的方程制定的时间演化的联合概率密度函数(PDF)之间的系统的响应和随机激励。特别是,功能积分方法来确定新类型的线性确定性偏微分方程满足的联合响应激励PDF与非线性随机常微分方程和偏微分方程的随机解。到目前为止,该理论是完整的非线性和拟线性一阶随机偏微分方程随机边界条件,随机初始条件或随机强迫项。对于高阶方程,如随机波动方程或Oberbeck-Boussinesq热对流方程,提出了一种新的基于微分约束的PDF方法。随机建模和不确定性量化是计算数学中重要的新方向,它将使物理和生物现象的准确预测成为可能,在气候、气候、气候变化、能源和新产品的设计。 拟议的工作将产生重大而广泛的影响,因为它将为许多物理和生物系统的不确定性量化,数据同化和敏感性分析奠定新的严格基础。它将从根本上影响我们设计新实验的方式和我们可以解决的问题类型,而模拟和实验之间的互动将变得更有意义和更动态。这项工作也将有助于在计算数学和概率论的界面上培养一批新的模拟科学家。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

George Karniadakis其他文献

Correction to: A computational mechanics special issue on: data-driven modeling and simulation—theory, methods, and applications
  • DOI:
    10.1007/s00466-019-01747-7
  • 发表时间:
    2019-06-28
  • 期刊:
  • 影响因子:
    3.800
  • 作者:
    Wing Kam Liu;George Karniadakis;Shaoqiang Tang;Julien Yvonnet
  • 通讯作者:
    Julien Yvonnet
Physics-Informed Learning Machines for Partial Differential Equations: Gaussian Processes Versus Neural Networks
用于偏微分方程的物理学习机:高斯过程与神经网络
En-DeepONet: An enrichment approach for enhancing the expressivity of neural operators with applications to seismology
  • DOI:
    10.1016/j.cma.2023.116681
  • 发表时间:
    2024-02-15
  • 期刊:
  • 影响因子:
  • 作者:
    Ehsan Haghighat;Umair bin Waheed;George Karniadakis
  • 通讯作者:
    George Karniadakis
Simulating and visualizing the human arterial system on the TeraGrid
  • DOI:
    10.1016/j.future.2006.03.019
  • 发表时间:
    2006-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Suchuan Dong;Joseph Insley;Nicholas T. Karonis;Michael E. Papka;Justin Binns;George Karniadakis
  • 通讯作者:
    George Karniadakis
CMINNs: Compartment model informed neural networks — Unlocking drug dynamics
  • DOI:
    10.1016/j.compbiomed.2024.109392
  • 发表时间:
    2025-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Nazanin Ahmadi Daryakenari;Shupeng Wang;George Karniadakis
  • 通讯作者:
    George Karniadakis

George Karniadakis的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('George Karniadakis', 18)}}的其他基金

Collaborative Research: AMPS: Multi-Fidelity Modeling via Machine Learning for Real-time Prediction of Power System Behavior
合作研究:AMPS:通过机器学习进行多保真度建模,实时预测电力系统行为
  • 批准号:
    1736088
  • 财政年份:
    2017
  • 资助金额:
    $ 35.06万
  • 项目类别:
    Continuing Grant
MANNA 2017: Modeling, Analysis, and Numerics for Nonlocal Applications
MANNA 2017:非局部应用的建模、分析和数值
  • 批准号:
    1747867
  • 财政年份:
    2017
  • 资助金额:
    $ 35.06万
  • 项目类别:
    Standard Grant
Collaborative Research: Scalable Multiscale Models for the Cerebrovasculature: Algorithms, Software and Petaflop Simulations
合作研究:可扩展的脑血管多尺度模型:算法、软件和千万亿次模拟
  • 批准号:
    0904288
  • 财政年份:
    2009
  • 资助金额:
    $ 35.06万
  • 项目类别:
    Standard Grant
Multiscale Modeling of Flow over Functionalized Surfaces: Algorithms and Applications
功能化表面流动的多尺度建模:算法和应用
  • 批准号:
    0852948
  • 财政年份:
    2009
  • 资助金额:
    $ 35.06万
  • 项目类别:
    Standard Grant
Overcoming the Bottlenecks in Polynomial Chaos: Algorithms and Applications to Systems Biology and Fluid Mechanics
克服多项式混沌的瓶颈:系统生物学和流体力学的算法和应用
  • 批准号:
    0915077
  • 财政年份:
    2009
  • 资助金额:
    $ 35.06万
  • 项目类别:
    Standard Grant
Multiscale Models and Petaflops Simulations on the Human Brain Vascular Network
人脑血管网络的多尺度模型和千万亿次模拟
  • 批准号:
    0845449
  • 财政年份:
    2008
  • 资助金额:
    $ 35.06万
  • 项目类别:
    Standard Grant
International Conference on Spectral and High-Order Methods 2009 - ICOSAHOM'09; June 2009, Trondheim, Norway
2009 年光谱和高阶方法国际会议 - ICOSAHOM09;
  • 批准号:
    0839866
  • 财政年份:
    2008
  • 资助金额:
    $ 35.06万
  • 项目类别:
    Standard Grant
CI-TEAM Implementation Project: Collaborative Research: Training Simulation Scientists in Advanced Cyberinfrastructure Tools and Concepts
CI-TEAM 实施项目:协作研究:培训模拟科学家掌握先进的网络基础设施工具和概念
  • 批准号:
    0636336
  • 财政年份:
    2006
  • 资助金额:
    $ 35.06万
  • 项目类别:
    Standard Grant
AMC-SS: A Multi-Element Generalized Polynomial Chaos Method for Modeling Uncertainty in Flow Simulations
AMC-SS:一种用于流体仿真中不确定性建模的多元素广义多项式混沌方法
  • 批准号:
    0510799
  • 财政年份:
    2005
  • 资助金额:
    $ 35.06万
  • 项目类别:
    Standard Grant
A Stochastic Molecular Dynamics Method for Multiscale Modeling of Blood Platlet Pheonmena
血小板现象多尺度建模的随机分子动力学方法
  • 批准号:
    0506312
  • 财政年份:
    2005
  • 资助金额:
    $ 35.06万
  • 项目类别:
    Continuing Grant

相似国自然基金

Galaxy Analytical Modeling Evolution (GAME) and cosmological hydrodynamic simulations.
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
镍基UNS N10003合金辐照位错环演化机制及其对力学性能的影响研究
  • 批准号:
    12375280
  • 批准年份:
    2023
  • 资助金额:
    53.00 万元
  • 项目类别:
    面上项目
Understanding structural evolution of galaxies with machine learning
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
发展/减排路径(SSPs/RCPs)下中国未来人口迁移与集聚时空演变及其影响
  • 批准号:
    19ZR1415200
  • 批准年份:
    2019
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
研究蝙蝠冬眠現象的分子进化机制
  • 批准号:
    31100273
  • 批准年份:
    2011
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
基于microRNA前体性质的microRNA演化研究
  • 批准号:
    31100951
  • 批准年份:
    2011
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
The formation and evolution of planetary systems in dense star clusters
  • 批准号:
    11043007
  • 批准年份:
    2010
  • 资助金额:
    10.0 万元
  • 项目类别:
    专项基金项目
星系演化背景下的年轻超大质量星团:悬而未决的难题
  • 批准号:
    11073001
  • 批准年份:
    2010
  • 资助金额:
    50.0 万元
  • 项目类别:
    面上项目
在我们的门前发掘化石——利用中国即将开展的巡天来研究银河系的演化
  • 批准号:
    11043005
  • 批准年份:
    2010
  • 资助金额:
    10.0 万元
  • 项目类别:
    专项基金项目
基于传孢类型藓类植物系统的修订
  • 批准号:
    30970188
  • 批准年份:
    2009
  • 资助金额:
    26.0 万元
  • 项目类别:
    面上项目

相似海外基金

New Challenges in the Study of Propagation of Randomness for Nonlinear Evolution Equations
非线性演化方程随机传播研究的新挑战
  • 批准号:
    2400036
  • 财政年份:
    2024
  • 资助金额:
    $ 35.06万
  • 项目类别:
    Standard Grant
Measure theoretic properties of phase field models for surface evolution equations
测量表面演化方程相场模型的理论特性
  • 批准号:
    23K03180
  • 财政年份:
    2023
  • 资助金额:
    $ 35.06万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Surface evolution equations and geometric analysis of viscosity solutions
表面演化方程和粘度解的几何分析
  • 批准号:
    23K03175
  • 财政年份:
    2023
  • 资助金额:
    $ 35.06万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Singularities and rigidity in geometric evolution equations
几何演化方程中的奇异性和刚性
  • 批准号:
    2304684
  • 财政年份:
    2023
  • 资助金额:
    $ 35.06万
  • 项目类别:
    Standard Grant
CAREER: Sparse Model Selection for Nonlinear Evolution Equations
职业:非线性演化方程的稀疏模型选择
  • 批准号:
    2331100
  • 财政年份:
    2022
  • 资助金额:
    $ 35.06万
  • 项目类别:
    Continuing Grant
Existence and blowup of solutions for nonlinear evolution equations and their numerical computations
非线性演化方程解的存在性、爆炸性及其数值计算
  • 批准号:
    571735-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 35.06万
  • 项目类别:
    University Undergraduate Student Research Awards
Shape-Morphing Modes for Efficient Computation of Multiscale Evolution Partial Differential Equations with Conserved Quantities
用于高效计算具有守恒量的多尺度演化偏微分方程的形状变形模式
  • 批准号:
    2208541
  • 财政年份:
    2022
  • 资助金额:
    $ 35.06万
  • 项目类别:
    Standard Grant
Long time behaviour for nonlinear evolution equations
非线性演化方程的长时间行为
  • 批准号:
    RGPIN-2018-06487
  • 财政年份:
    2022
  • 资助金额:
    $ 35.06万
  • 项目类别:
    Discovery Grants Program - Individual
Existence and blowup of solutions for nonlinear evolution equations and their numerical computations
非线性演化方程解的存在性、爆炸性及其数值计算
  • 批准号:
    RGPIN-2019-05940
  • 财政年份:
    2022
  • 资助金额:
    $ 35.06万
  • 项目类别:
    Discovery Grants Program - Individual
Existence and blowup of solutions for nonlinear evolution equations and their numerical computations
非线性演化方程解的存在性、爆炸性及其数值计算
  • 批准号:
    561540-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 35.06万
  • 项目类别:
    University Undergraduate Student Research Awards
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了