New evolution equations of the joint response-excitation PDF for stochastic modeling: Theory and numerical methods
用于随机建模的联合响应激励 PDF 的新演化方程:理论和数值方法
基本信息
- 批准号:1216437
- 负责人:
- 金额:$ 35.06万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-09-01 至 2016-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
New theory and corresponding numerical algorithms are proposed for addressing fundamental open questions in stochastic modeling of physical and biological systems, e.g., the curse-of-dimensionality, the lack of regularity and the long-time integration of stochastic systems. Such problems arise in applications involving processes with small relative correlation length or large number of random parameters, and for time-dependent nonlinear systems subject to uncertainty. The new equations are formulated in terms of the time-evolution of the joint probability density function (PDF) between the system's response and the stochastic excitation. In particular, functional integral methods are employed to determine new types of linear deterministic partial differential equations satisfied by the joint response-excitation PDF associated with the stochastic solution of nonlinear stochastic ordinary and partial differential equations. So far the theory is complete for nonlinear and for quasilinear first-order stochastic PDEs subject to random boundary conditions, random initial conditions or random forcing terms. For higher-order equations, such the stochastic wave equation or the Oberbeck-Boussinesq thermal convection equations, it is proposed to develop a new PDF method based on differential constraints for the PDF of the solution. It is proposed to investigate the theoretical and numerical effectiveness of this new approach for high-dimensional random systems, such as random flows subject to high-dimensional random boundary or initial conditions in bounded domains.Stochastic modeling and uncertainty quantification are important new directions in computational mathematics that will enable accurate predictions of physical and biological phenomena,in critical applications such as climate, energy and the design of new products. The proposed work will have significant and broad impact as it will set new rigorous foundations in uncertainty quantification, data assimilation and sensitivity analysis for many physical and biological systems. It will affect fundamentally the way we design new experiments and the type of questions that we can address, while the interaction between simulation and experiment will become more meaningful and more dynamic. This work will also aid in educating a new cadre of simulation scientists in this metadiscipline at the interface of computational mathematics and probability theory.
提出了新的理论和相应的数值算法,以解决物理和生物系统随机建模中的基本开放问题,例如,差异性,缺乏规律性和随机系统的长期整合。此类问题出现在涉及具有较小相关长度或大量随机参数的过程中,并且对于时间依赖性的非线性系统而产生。新方程是根据系统响应和随机激发之间的关节概率密度函数(PDF)的时间进化来制定的。特别是,使用功能积分方法来确定与非线性随机普通和部分微分方程的随机解决方案相关的联合响应激发PDF满足的新型线性确定性偏微分方程。到目前为止,对于非线性和准线性一阶随机PDE,该理论是完整的,受随机边界条件,随机初始条件或随机强迫项的影响。对于高阶方程,例如随机波方程或Oberbeck-Boussinesq热对流方程,建议开发一种基于溶液PDF差异约束的新PDF方法。有人建议研究这种新方法对高维随机系统的理论和数值有效性,例如受到高维随机边界或有限域中的初始条件的随机流。构建和不确定性量化是计算数学中的重要新方向,这些方向将可以准确地预测物理和生物学现象的准确预测,例如批判性现象,以及批判性的现象。 拟议的工作将产生重大和广泛的影响,因为它将为许多物理和生物系统的不确定性量化,数据同化和灵敏度分析树立新的严格基础。它将从根本上影响我们设计新实验的方式以及可以解决的问题的类型,而模拟与实验之间的相互作用将变得更有意义,更具动态性。这项工作还将有助于在计算数学和概率理论的界面上,在该元学学中教育新的模拟科学家干部。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
George Karniadakis其他文献
Physics-Informed Learning Machines for Partial Differential Equations: Gaussian Processes Versus Neural Networks
用于偏微分方程的物理学习机:高斯过程与神经网络
- DOI:
10.1007/978-3-030-44992-6_14 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Guofei Pang;George Karniadakis - 通讯作者:
George Karniadakis
CMINNs: Compartment model informed neural networks — Unlocking drug dynamics
- DOI:
10.1016/j.compbiomed.2024.109392 - 发表时间:
2025-01-01 - 期刊:
- 影响因子:
- 作者:
Nazanin Ahmadi Daryakenari;Shupeng Wang;George Karniadakis - 通讯作者:
George Karniadakis
MSM White Paper: Cell Scale to Macroscale Integration
MSM 白皮书:细胞尺度到宏观尺度的集成
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Ching;George Karniadakis;James G. Brasseur;Bridget S. Wilson;Yi Jiang - 通讯作者:
Yi Jiang
Simulating and visualizing the human arterial system on the TeraGrid
- DOI:
10.1016/j.future.2006.03.019 - 发表时间:
2006-10-01 - 期刊:
- 影响因子:
- 作者:
Suchuan Dong;Joseph Insley;Nicholas T. Karonis;Michael E. Papka;Justin Binns;George Karniadakis - 通讯作者:
George Karniadakis
En-DeepONet: An enrichment approach for enhancing the expressivity of neural operators with applications to seismology
- DOI:
10.1016/j.cma.2023.116681 - 发表时间:
2024-02-15 - 期刊:
- 影响因子:
- 作者:
Ehsan Haghighat;Umair bin Waheed;George Karniadakis - 通讯作者:
George Karniadakis
George Karniadakis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('George Karniadakis', 18)}}的其他基金
Collaborative Research: AMPS: Multi-Fidelity Modeling via Machine Learning for Real-time Prediction of Power System Behavior
合作研究:AMPS:通过机器学习进行多保真度建模,实时预测电力系统行为
- 批准号:
1736088 - 财政年份:2017
- 资助金额:
$ 35.06万 - 项目类别:
Continuing Grant
MANNA 2017: Modeling, Analysis, and Numerics for Nonlocal Applications
MANNA 2017:非局部应用的建模、分析和数值
- 批准号:
1747867 - 财政年份:2017
- 资助金额:
$ 35.06万 - 项目类别:
Standard Grant
Collaborative Research: Scalable Multiscale Models for the Cerebrovasculature: Algorithms, Software and Petaflop Simulations
合作研究:可扩展的脑血管多尺度模型:算法、软件和千万亿次模拟
- 批准号:
0904288 - 财政年份:2009
- 资助金额:
$ 35.06万 - 项目类别:
Standard Grant
Multiscale Modeling of Flow over Functionalized Surfaces: Algorithms and Applications
功能化表面流动的多尺度建模:算法和应用
- 批准号:
0852948 - 财政年份:2009
- 资助金额:
$ 35.06万 - 项目类别:
Standard Grant
Overcoming the Bottlenecks in Polynomial Chaos: Algorithms and Applications to Systems Biology and Fluid Mechanics
克服多项式混沌的瓶颈:系统生物学和流体力学的算法和应用
- 批准号:
0915077 - 财政年份:2009
- 资助金额:
$ 35.06万 - 项目类别:
Standard Grant
Multiscale Models and Petaflops Simulations on the Human Brain Vascular Network
人脑血管网络的多尺度模型和千万亿次模拟
- 批准号:
0845449 - 财政年份:2008
- 资助金额:
$ 35.06万 - 项目类别:
Standard Grant
International Conference on Spectral and High-Order Methods 2009 - ICOSAHOM'09; June 2009, Trondheim, Norway
2009 年光谱和高阶方法国际会议 - ICOSAHOM09;
- 批准号:
0839866 - 财政年份:2008
- 资助金额:
$ 35.06万 - 项目类别:
Standard Grant
CI-TEAM Implementation Project: Collaborative Research: Training Simulation Scientists in Advanced Cyberinfrastructure Tools and Concepts
CI-TEAM 实施项目:协作研究:培训模拟科学家掌握先进的网络基础设施工具和概念
- 批准号:
0636336 - 财政年份:2006
- 资助金额:
$ 35.06万 - 项目类别:
Standard Grant
AMC-SS: A Multi-Element Generalized Polynomial Chaos Method for Modeling Uncertainty in Flow Simulations
AMC-SS:一种用于流体仿真中不确定性建模的多元素广义多项式混沌方法
- 批准号:
0510799 - 财政年份:2005
- 资助金额:
$ 35.06万 - 项目类别:
Standard Grant
A Stochastic Molecular Dynamics Method for Multiscale Modeling of Blood Platlet Pheonmena
血小板现象多尺度建模的随机分子动力学方法
- 批准号:
0506312 - 财政年份:2005
- 资助金额:
$ 35.06万 - 项目类别:
Continuing Grant
相似国自然基金
进化视角下黑色旅游游客的心理机制研究
- 批准号:72302157
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于天然序列库的天冬酰胺多肽连接酶计算进化及机理研究
- 批准号:32371324
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
赤霉素与B类MADS-box基因互作调控紫花地丁两型花进化发育机制研究
- 批准号:32360059
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
西瓜果实成熟与品质形成进化的转录调控分子机制
- 批准号:32330093
- 批准年份:2023
- 资助金额:221 万元
- 项目类别:重点项目
多环芳烃影响大肠杆菌抗生素耐药性进化的分子机制
- 批准号:32301424
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
New Challenges in the Study of Propagation of Randomness for Nonlinear Evolution Equations
非线性演化方程随机传播研究的新挑战
- 批准号:
2400036 - 财政年份:2024
- 资助金额:
$ 35.06万 - 项目类别:
Standard Grant
Development, evolution, and new development of stochastic analysis of infinite particle systems
无限粒子系统随机分析的发展、演变和新发展
- 批准号:
21H04432 - 财政年份:2021
- 资助金额:
$ 35.06万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Analysis of Internet services as Biological Evolution systems
作为生物进化系统的互联网服务分析
- 批准号:
17H01821 - 财政年份:2017
- 资助金额:
$ 35.06万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
New developments on evolution equations and variational problems by geometric conservation laws
几何守恒定律演化方程和变分问题的新进展
- 批准号:
25800072 - 财政年份:2013
- 资助金额:
$ 35.06万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
New directions in geometric evolution equations
几何演化方程的新方向
- 批准号:
DP120100097 - 财政年份:2012
- 资助金额:
$ 35.06万 - 项目类别:
Discovery Projects