Collaborative Research: Scalable Multiscale Models for the Cerebrovasculature: Algorithms, Software and Petaflop Simulations

合作研究:可扩展的脑血管多尺度模型:算法、软件和千万亿次模拟

基本信息

  • 批准号:
    0904288
  • 负责人:
  • 金额:
    $ 67.82万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-09-01 至 2013-08-31
  • 项目状态:
    已结题

项目摘要

Future petaflop simulations of realistic biological and physical systems will necessarily involve concurrent multiscale modeling. This project will address fundamental mathematical, algorithmic and software issues for simulating a human brain vascular model, the first of its kind, consisting of 100 large 3D arteries (Macrovascular Network, MaN), 10 million arterioles (Mesovascular Network,MeN) and one billion capillaries (Microvascular Network, MiN). The three-level MaN-MeN-MiN integration offers a general platform for developing hybrid deterministic-stochastic systems, scalable algorithms, and scalable multiscale software to handle coupling between heterogeneous PDEs and also between continuum and atomistic formulations. Building upon their initial work on the human arterial tree and the new brain imaging data, PIs propose image-based 3D Navier-Stokes simulations for fully resolving MaN, coupled to subpixel stochastic simulations of MeN and MiN to complete the closure. Project will implement an MPI/UPC hybrid model to exploit the strengths of both programming paradigms: the high scalability and rich functionality for process control in MPI, and the low communication overhead for small messages and fine-grain parallelism in UPC. We will further seek to integrate multi-threading into the MPI/UPC model, especially for dynamic refinement. The main software advancement will be the development of MPIg tailored for multiscale applications, like the MaN-MeN-MiN problem, on a single or multiple petaflop platforms. Several open issues associated with co-processing and visualization of petabyte-size data will be also addressed.Broader Impact: This work will contribute to Computational Mathematics (interfacing heterogeneous PDEs, and also PDEs-atomistic systems); to Computer Science (development of UPC/MPI, multiscale MPIg, and increased leverage of vendor-supplied MPI in MPIg); and Bioengineering (biomechanics gateway to simulate brain pathologies). This proposal is transformative in that it shifts the computational paradigm to a new level (orders of magnitude above the state-of-the-art) that will allow, for first time, realistic simulations of cerebrovasculature in health and disease. The validated algorithms for peta°op computing we propose are of general interest for use in many multiscale biological and physical applications, including vascular trees of all living organisms and also in simulations of nuclear reactors and other power/chemical plants. The new simulation environment, with the human brain as a backdrop, will be critical in training a new generation of inter-disciplinary scientists to be comfortable in using multiscale mathematics and scalable software tools for extreme computing. Project will engage postdocs, graduate, undergraduate and high school students. We will use 3D immersive/interactive visualizations as an opportunity to educate students about simulation, predictability, and other issues of computer science, engineering, and applied mathematics. Outreach activities will involve female students from middle and high schools and students from the special MET high schools.
对现实生物系统和物理系统的未来PETAFLOP模拟必然涉及并发的多尺度建模。该项目将解决模拟人脑血管模型的基本数学,算法和软件问题,其中首先由100个大型3D动脉(大型3D动脉)(Macrascular Network,MAN),1000万个动脉(中气管网络,男性)和1000万个动脉和1000万个毛细管(Microsasculen Networkies)(微血管网络,最小)。三层人行为的集成提供了一个通用平台,可用于开发混合确定性系统,可扩展算法和可扩展的多尺度软件,以处理异质PDE之间以及持续和原子公式之间的耦合。基于他们在人类动脉树上的最初工作和新的脑成像数据的基础上,PIS提案基于图像的3D Navier-Stokess模拟了完全解决的人,并结合了男性和最小的子像素随机模拟,以完成封闭。项目将实施MPI/UPC混合模型,以利用两种编程范式的优势:MPI中过程控制的高扩展性和丰富功能,以及在UPC中用于小消息和细粒度并行性的低通信开销。我们将进一步寻求将多线程集成到MPI/UPC模型中,尤其是用于动态改进。主要的软件进步将是在单个或多个PETAFLOP平台上量身定制的用于多尺度应用程序的MPIG。与PBABYTES大小数据的共处理和可视化相关的几个开放问题也将得到解决。Boader的影响:这项工作将有助于计算数学(与异质PDES,以及PDES-Atomistic Systems相互交流);进入计算机科学(开发UPC/MPI,多尺度MPIG以及MPIG中供应商供应商MPI的杠杆作用);和生物工程(生物力学的网关,用于模拟脑病理学)。该提议具有变革性的是,它将计算范式转移到了一个新的水平(高于最先进的水平),这将首次允许对健康和疾病中的大脑脑堵嘴进行现实的模拟。我们建议的PETA°°OP计算算法是用于许多多尺度生物学和物理应用,包括所有生物体的血管树以及核反应堆和其他化学工厂的模拟。新的模拟环境以人脑为背景,对于培训新一代的跨学科科学家将很舒适,可以使用多尺度数学和可扩展的软件工具来进行极端计算。项目将与博士后,毕业生,本科和高中生联系。我们将使用3D沉浸式/交互式可视化作为机会,以教育学生有关计算机科学,工程和应用数学问题的模拟,可预测性以及其他问题。外展活动将涉及来自中学的女学生以及来自特殊的大都会高中的学生。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

George Karniadakis其他文献

Physics-Informed Learning Machines for Partial Differential Equations: Gaussian Processes Versus Neural Networks
用于偏微分方程的物理学习机:高斯过程与神经网络
CMINNs: Compartment model informed neural networks — Unlocking drug dynamics
  • DOI:
    10.1016/j.compbiomed.2024.109392
  • 发表时间:
    2025-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Nazanin Ahmadi Daryakenari;Shupeng Wang;George Karniadakis
  • 通讯作者:
    George Karniadakis
MSM White Paper: Cell Scale to Macroscale Integration
MSM 白皮书:细胞尺度到宏观尺度的集成
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ching;George Karniadakis;James G. Brasseur;Bridget S. Wilson;Yi Jiang
  • 通讯作者:
    Yi Jiang
Simulating and visualizing the human arterial system on the TeraGrid
  • DOI:
    10.1016/j.future.2006.03.019
  • 发表时间:
    2006-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Suchuan Dong;Joseph Insley;Nicholas T. Karonis;Michael E. Papka;Justin Binns;George Karniadakis
  • 通讯作者:
    George Karniadakis
En-DeepONet: An enrichment approach for enhancing the expressivity of neural operators with applications to seismology
  • DOI:
    10.1016/j.cma.2023.116681
  • 发表时间:
    2024-02-15
  • 期刊:
  • 影响因子:
  • 作者:
    Ehsan Haghighat;Umair bin Waheed;George Karniadakis
  • 通讯作者:
    George Karniadakis

George Karniadakis的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('George Karniadakis', 18)}}的其他基金

Collaborative Research: AMPS: Multi-Fidelity Modeling via Machine Learning for Real-time Prediction of Power System Behavior
合作研究:AMPS:通过机器学习进行多保真度建模,实时预测电力系统行为
  • 批准号:
    1736088
  • 财政年份:
    2017
  • 资助金额:
    $ 67.82万
  • 项目类别:
    Continuing Grant
MANNA 2017: Modeling, Analysis, and Numerics for Nonlocal Applications
MANNA 2017:非局部应用的建模、分析和数值
  • 批准号:
    1747867
  • 财政年份:
    2017
  • 资助金额:
    $ 67.82万
  • 项目类别:
    Standard Grant
New evolution equations of the joint response-excitation PDF for stochastic modeling: Theory and numerical methods
用于随机建模的联合响应激励 PDF 的新演化方程:理论和数值方法
  • 批准号:
    1216437
  • 财政年份:
    2012
  • 资助金额:
    $ 67.82万
  • 项目类别:
    Continuing Grant
Multiscale Modeling of Flow over Functionalized Surfaces: Algorithms and Applications
功能化表面流动的多尺度建模:算法和应用
  • 批准号:
    0852948
  • 财政年份:
    2009
  • 资助金额:
    $ 67.82万
  • 项目类别:
    Standard Grant
Overcoming the Bottlenecks in Polynomial Chaos: Algorithms and Applications to Systems Biology and Fluid Mechanics
克服多项式混沌的瓶颈:系统生物学和流体力学的算法和应用
  • 批准号:
    0915077
  • 财政年份:
    2009
  • 资助金额:
    $ 67.82万
  • 项目类别:
    Standard Grant
Multiscale Models and Petaflops Simulations on the Human Brain Vascular Network
人脑血管网络的多尺度模型和千万亿次模拟
  • 批准号:
    0845449
  • 财政年份:
    2008
  • 资助金额:
    $ 67.82万
  • 项目类别:
    Standard Grant
International Conference on Spectral and High-Order Methods 2009 - ICOSAHOM'09; June 2009, Trondheim, Norway
2009 年光谱和高阶方法国际会议 - ICOSAHOM09;
  • 批准号:
    0839866
  • 财政年份:
    2008
  • 资助金额:
    $ 67.82万
  • 项目类别:
    Standard Grant
CI-TEAM Implementation Project: Collaborative Research: Training Simulation Scientists in Advanced Cyberinfrastructure Tools and Concepts
CI-TEAM 实施项目:协作研究:培训模拟科学家掌握先进的网络基础设施工具和概念
  • 批准号:
    0636336
  • 财政年份:
    2006
  • 资助金额:
    $ 67.82万
  • 项目类别:
    Standard Grant
AMC-SS: A Multi-Element Generalized Polynomial Chaos Method for Modeling Uncertainty in Flow Simulations
AMC-SS:一种用于流体仿真中不确定性建模的多元素广义多项式混沌方法
  • 批准号:
    0510799
  • 财政年份:
    2005
  • 资助金额:
    $ 67.82万
  • 项目类别:
    Standard Grant
A Stochastic Molecular Dynamics Method for Multiscale Modeling of Blood Platlet Pheonmena
血小板现象多尺度建模的随机分子动力学方法
  • 批准号:
    0506312
  • 财政年份:
    2005
  • 资助金额:
    $ 67.82万
  • 项目类别:
    Continuing Grant

相似国自然基金

面向智能网卡的可扩展FPGA包分类技术研究
  • 批准号:
    62372123
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
面向高并发软件的可扩展建模与分析技术研究
  • 批准号:
    62302375
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于随机化的高效可扩展深度学习算法研究
  • 批准号:
    62376131
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
基于可扩展去蜂窝架构的大规模低时延高可靠通信研究
  • 批准号:
    62371039
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
自动驾驶场景下基于强化学习的可扩展多智能体协同策略研究
  • 批准号:
    62306062
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: Scalable Nanomanufacturing of Perovskite-Analogue Nanocrystals via Continuous Flow Reactors
合作研究:通过连续流反应器进行钙钛矿类似物纳米晶体的可扩展纳米制造
  • 批准号:
    2315997
  • 财政年份:
    2024
  • 资助金额:
    $ 67.82万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
  • 批准号:
    2412357
  • 财政年份:
    2024
  • 资助金额:
    $ 67.82万
  • 项目类别:
    Standard Grant
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
  • 批准号:
    2326714
  • 财政年份:
    2024
  • 资助金额:
    $ 67.82万
  • 项目类别:
    Standard Grant
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
  • 批准号:
    2326713
  • 财政年份:
    2024
  • 资助金额:
    $ 67.82万
  • 项目类别:
    Standard Grant
Collaborative Research: Scalable Nanomanufacturing of Perovskite-Analogue Nanocrystals via Continuous Flow Reactors
合作研究:通过连续流反应器进行钙钛矿类似物纳米晶体的可扩展纳米制造
  • 批准号:
    2315996
  • 财政年份:
    2024
  • 资助金额:
    $ 67.82万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了