Collaborative Research: Scalable Multiscale Models for the Cerebrovasculature: Algorithms, Software and Petaflop Simulations
合作研究:可扩展的脑血管多尺度模型:算法、软件和千万亿次模拟
基本信息
- 批准号:0904288
- 负责人:
- 金额:$ 67.82万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-09-01 至 2013-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Future petaflop simulations of realistic biological and physical systems will necessarily involve concurrent multiscale modeling. This project will address fundamental mathematical, algorithmic and software issues for simulating a human brain vascular model, the first of its kind, consisting of 100 large 3D arteries (Macrovascular Network, MaN), 10 million arterioles (Mesovascular Network,MeN) and one billion capillaries (Microvascular Network, MiN). The three-level MaN-MeN-MiN integration offers a general platform for developing hybrid deterministic-stochastic systems, scalable algorithms, and scalable multiscale software to handle coupling between heterogeneous PDEs and also between continuum and atomistic formulations. Building upon their initial work on the human arterial tree and the new brain imaging data, PIs propose image-based 3D Navier-Stokes simulations for fully resolving MaN, coupled to subpixel stochastic simulations of MeN and MiN to complete the closure. Project will implement an MPI/UPC hybrid model to exploit the strengths of both programming paradigms: the high scalability and rich functionality for process control in MPI, and the low communication overhead for small messages and fine-grain parallelism in UPC. We will further seek to integrate multi-threading into the MPI/UPC model, especially for dynamic refinement. The main software advancement will be the development of MPIg tailored for multiscale applications, like the MaN-MeN-MiN problem, on a single or multiple petaflop platforms. Several open issues associated with co-processing and visualization of petabyte-size data will be also addressed.Broader Impact: This work will contribute to Computational Mathematics (interfacing heterogeneous PDEs, and also PDEs-atomistic systems); to Computer Science (development of UPC/MPI, multiscale MPIg, and increased leverage of vendor-supplied MPI in MPIg); and Bioengineering (biomechanics gateway to simulate brain pathologies). This proposal is transformative in that it shifts the computational paradigm to a new level (orders of magnitude above the state-of-the-art) that will allow, for first time, realistic simulations of cerebrovasculature in health and disease. The validated algorithms for peta°op computing we propose are of general interest for use in many multiscale biological and physical applications, including vascular trees of all living organisms and also in simulations of nuclear reactors and other power/chemical plants. The new simulation environment, with the human brain as a backdrop, will be critical in training a new generation of inter-disciplinary scientists to be comfortable in using multiscale mathematics and scalable software tools for extreme computing. Project will engage postdocs, graduate, undergraduate and high school students. We will use 3D immersive/interactive visualizations as an opportunity to educate students about simulation, predictability, and other issues of computer science, engineering, and applied mathematics. Outreach activities will involve female students from middle and high schools and students from the special MET high schools.
未来的petaflop模拟现实的生物和物理系统将必然涉及并发多尺度建模。该项目将解决模拟人脑血管模型的基本数学,算法和软件问题,这是同类模型中的第一个,由100个大型3D动脉(Macrovascular Network,MaN),1000万个小动脉(Mesovascular Network,MeN)和10亿个毛细血管(Microvascular Network,MiN)组成。的三个层次的MAN-MeN-MiN集成提供了一个通用的平台,用于开发混合确定性随机系统,可扩展的算法,可扩展的多尺度软件来处理异构偏微分方程之间的耦合,也连续和原子的配方。在他们对人体动脉树和新的大脑成像数据的初步工作的基础上,PI提出了基于图像的3D Navier-Stokes模拟来完全解析MaN,并结合MeN和MiN的亚像素随机模拟来完成闭合。 项目将实现MPI/UPC混合模型,以利用两种编程范式的优势:MPI中进程控制的高可扩展性和丰富功能,以及UPC中小消息和细粒度并行的低通信开销。我们将进一步寻求将多线程集成到MPI/UPC模型中,特别是用于动态细化。主要的软件进步将是针对多尺度应用(如MaN-MeN-MiN问题)在单个或多个petaflop平台上开发MPIg。更广泛的影响:这项工作将有助于计算数学(接口异构偏微分方程,也偏微分方程原子系统);计算机科学(UPC/MPI的发展,多尺度MPIg,并增加供应商提供的MPI在MPIg的杠杆作用);和生物工程(生物力学网关模拟大脑病理)。这个提议是变革性的,因为它将计算范式转移到一个新的水平(高于最先进水平的数量级),这将首次允许健康和疾病中的血管系统的逼真模拟。我们提出的peta°op计算的验证算法在许多多尺度生物和物理应用中具有普遍意义,包括所有生物体的血管树以及核反应堆和其他动力/化学工厂的模拟。以人脑为背景的新仿真环境,对于培训新一代跨学科科学家,使他们能够自如地使用多尺度数学和可扩展的软件工具进行极限计算至关重要。项目将吸引博士后,研究生,本科生和高中生。我们将使用3D沉浸式/交互式可视化作为机会,对学生进行模拟、可预测性以及计算机科学、工程和应用数学的其他问题的教育。外联活动将涉及初中和高中的女生以及教育和培训部特别高中的学生。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
George Karniadakis其他文献
Correction to: A computational mechanics special issue on: data-driven modeling and simulation—theory, methods, and applications
- DOI:
10.1007/s00466-019-01747-7 - 发表时间:
2019-06-28 - 期刊:
- 影响因子:3.800
- 作者:
Wing Kam Liu;George Karniadakis;Shaoqiang Tang;Julien Yvonnet - 通讯作者:
Julien Yvonnet
Physics-Informed Learning Machines for Partial Differential Equations: Gaussian Processes Versus Neural Networks
用于偏微分方程的物理学习机:高斯过程与神经网络
- DOI:
10.1007/978-3-030-44992-6_14 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Guofei Pang;George Karniadakis - 通讯作者:
George Karniadakis
Simulating and visualizing the human arterial system on the TeraGrid
- DOI:
10.1016/j.future.2006.03.019 - 发表时间:
2006-10-01 - 期刊:
- 影响因子:
- 作者:
Suchuan Dong;Joseph Insley;Nicholas T. Karonis;Michael E. Papka;Justin Binns;George Karniadakis - 通讯作者:
George Karniadakis
En-DeepONet: An enrichment approach for enhancing the expressivity of neural operators with applications to seismology
- DOI:
10.1016/j.cma.2023.116681 - 发表时间:
2024-02-15 - 期刊:
- 影响因子:
- 作者:
Ehsan Haghighat;Umair bin Waheed;George Karniadakis - 通讯作者:
George Karniadakis
CMINNs: Compartment model informed neural networks — Unlocking drug dynamics
- DOI:
10.1016/j.compbiomed.2024.109392 - 发表时间:
2025-01-01 - 期刊:
- 影响因子:
- 作者:
Nazanin Ahmadi Daryakenari;Shupeng Wang;George Karniadakis - 通讯作者:
George Karniadakis
George Karniadakis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('George Karniadakis', 18)}}的其他基金
Collaborative Research: AMPS: Multi-Fidelity Modeling via Machine Learning for Real-time Prediction of Power System Behavior
合作研究:AMPS:通过机器学习进行多保真度建模,实时预测电力系统行为
- 批准号:
1736088 - 财政年份:2017
- 资助金额:
$ 67.82万 - 项目类别:
Continuing Grant
MANNA 2017: Modeling, Analysis, and Numerics for Nonlocal Applications
MANNA 2017:非局部应用的建模、分析和数值
- 批准号:
1747867 - 财政年份:2017
- 资助金额:
$ 67.82万 - 项目类别:
Standard Grant
New evolution equations of the joint response-excitation PDF for stochastic modeling: Theory and numerical methods
用于随机建模的联合响应激励 PDF 的新演化方程:理论和数值方法
- 批准号:
1216437 - 财政年份:2012
- 资助金额:
$ 67.82万 - 项目类别:
Continuing Grant
Multiscale Modeling of Flow over Functionalized Surfaces: Algorithms and Applications
功能化表面流动的多尺度建模:算法和应用
- 批准号:
0852948 - 财政年份:2009
- 资助金额:
$ 67.82万 - 项目类别:
Standard Grant
Overcoming the Bottlenecks in Polynomial Chaos: Algorithms and Applications to Systems Biology and Fluid Mechanics
克服多项式混沌的瓶颈:系统生物学和流体力学的算法和应用
- 批准号:
0915077 - 财政年份:2009
- 资助金额:
$ 67.82万 - 项目类别:
Standard Grant
Multiscale Models and Petaflops Simulations on the Human Brain Vascular Network
人脑血管网络的多尺度模型和千万亿次模拟
- 批准号:
0845449 - 财政年份:2008
- 资助金额:
$ 67.82万 - 项目类别:
Standard Grant
International Conference on Spectral and High-Order Methods 2009 - ICOSAHOM'09; June 2009, Trondheim, Norway
2009 年光谱和高阶方法国际会议 - ICOSAHOM09;
- 批准号:
0839866 - 财政年份:2008
- 资助金额:
$ 67.82万 - 项目类别:
Standard Grant
CI-TEAM Implementation Project: Collaborative Research: Training Simulation Scientists in Advanced Cyberinfrastructure Tools and Concepts
CI-TEAM 实施项目:协作研究:培训模拟科学家掌握先进的网络基础设施工具和概念
- 批准号:
0636336 - 财政年份:2006
- 资助金额:
$ 67.82万 - 项目类别:
Standard Grant
AMC-SS: A Multi-Element Generalized Polynomial Chaos Method for Modeling Uncertainty in Flow Simulations
AMC-SS:一种用于流体仿真中不确定性建模的多元素广义多项式混沌方法
- 批准号:
0510799 - 财政年份:2005
- 资助金额:
$ 67.82万 - 项目类别:
Standard Grant
A Stochastic Molecular Dynamics Method for Multiscale Modeling of Blood Platlet Pheonmena
血小板现象多尺度建模的随机分子动力学方法
- 批准号:
0506312 - 财政年份:2005
- 资助金额:
$ 67.82万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Scalable Nanomanufacturing of Perovskite-Analogue Nanocrystals via Continuous Flow Reactors
合作研究:通过连续流反应器进行钙钛矿类似物纳米晶体的可扩展纳米制造
- 批准号:
2315997 - 财政年份:2024
- 资助金额:
$ 67.82万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
- 批准号:
2412357 - 财政年份:2024
- 资助金额:
$ 67.82万 - 项目类别:
Standard Grant
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
- 批准号:
2326714 - 财政年份:2024
- 资助金额:
$ 67.82万 - 项目类别:
Standard Grant
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
- 批准号:
2326713 - 财政年份:2024
- 资助金额:
$ 67.82万 - 项目类别:
Standard Grant
Collaborative Research: Scalable Nanomanufacturing of Perovskite-Analogue Nanocrystals via Continuous Flow Reactors
合作研究:通过连续流反应器进行钙钛矿类似物纳米晶体的可扩展纳米制造
- 批准号:
2315996 - 财政年份:2024
- 资助金额:
$ 67.82万 - 项目类别:
Standard Grant
Collaborative Research: Scalable Circuit theoretic Framework for Large Grid Simulations and Optimizations: from Combined T&D Planning to Electromagnetic Transients
协作研究:大型电网仿真和优化的可扩展电路理论框架:来自组合 T
- 批准号:
2330195 - 财政年份:2024
- 资助金额:
$ 67.82万 - 项目类别:
Standard Grant
Collaborative Research: Scalable Circuit theoretic Framework for Large Grid Simulations and Optimizations: from Combined T&D Planning to Electromagnetic Transients
协作研究:大型电网仿真和优化的可扩展电路理论框架:来自组合 T
- 批准号:
2330196 - 财政年份:2024
- 资助金额:
$ 67.82万 - 项目类别:
Standard Grant
Collaborative Research: Leveraging Crowd-AI Teams for Scalable Novelty Ratings of Heterogeneous Design Representations
协作研究:利用群体人工智能团队对异构设计表示进行可扩展的新颖性评级
- 批准号:
2231254 - 财政年份:2023
- 资助金额:
$ 67.82万 - 项目类别:
Standard Grant
Collaborative Research: Leveraging Crowd-AI Teams for Scalable Novelty Ratings of Heterogeneous Design Representations
协作研究:利用群体人工智能团队对异构设计表示进行可扩展的新颖性评级
- 批准号:
2231261 - 财政年份:2023
- 资助金额:
$ 67.82万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: Algorithms for scalable inference and phylodynamic analysis of tumor haplotypes using low-coverage single cell sequencing data
合作研究:III:中:使用低覆盖率单细胞测序数据对肿瘤单倍型进行可扩展推理和系统动力学分析的算法
- 批准号:
2415562 - 财政年份:2023
- 资助金额:
$ 67.82万 - 项目类别:
Standard Grant