III: Small: Modeling, Querying and Mining of Dynamic Graphs
三:小:动态图的建模、查询和挖掘
基本信息
- 批准号:1219254
- 负责人:
- 金额:$ 49.83万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-09-01 至 2016-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Many applications generate data that can be modeled as graphs: Biological networks, social networks, ecological networks and food-webs, among others. Traditional graph theory and most current research in graph modeling, querying, and mining concentrates on problems where the graph structure is inherently static and does not change with time. But networks in the real world are dynamic in nature with a wide range of temporal changes. While the topology of networks such as social networks and transportation networks undergoes gradual change (or evolution), the content (information flow, annotations) changes more rapidly. Against this background, this project aims to develop a set of scalable querying and mining tools for dynamic graphs by integrating techniques from databases, data mining, and algorithms. The first research thrust examines inherent properties for characterizing dynamic graphs, specifically the dynamic reachability structure of nodes. It also investigates high-fidelity methods for generating dynamic graphs based on these properties. The second research thrust aims to develop summarization techniques for dynamic graph structures. These techniques can be used to compress large graph datasets, to make predictions about future values, and to query information cascades under partial observation. The third research thrust aims to develop techniques for mining significant dynamic subgraphs under different constraints of connectivity such as fixed subgraph structure, connected subgraphs, and smooth subgraphs. The goal is here to find anomalous patterns in dynamic graph datasets using a statistical characterization of background behavior. The final research thrust reconsiders the first three research thrusts from the point of view of content and topic models in order to understand the relationship between content of a message and its flow in a network. The developed methods will be evaluated using a number of real-world data sets including email datasets such as Enron, re-tweeting activity data sets on Twitter, Facebook wall posts, and transportation networks. An important result of this work is a theoretically well-founded and empirically verifiable framework for modeling, querying and mining of dynamic graphs. Aspects of dynamic behavior in which both the structure of networks and their content (information flow, annotations, etc.) change will be considered. The study of such dynamic networks and how information flows through them is essential to developing a theory of dynamic networks and their evolution. This work helps answer questions such as power-law applies to dynamic behavior, whether content of a message can predict its flow and vice versa, whether anomalies in a dynamic network can be mined effectively by building either an empirical summary or a generative model. Robust open source tools based on the developed algorithms will be released for research, academic and non-profit endeavors. The research is expected to yield new techniques in graph algorithms, graph databases, and graph mining, and realize a collection of tools that can be used by scientists, and ultimately lead to a theory for dynamic graphs. Broader Impacts: The proposed project will integrate research and education by introducing the results of the project into a graduate seminar, and a graduate course on information management. The project will support a postdoctoral researcher and train graduate students. The project offers enhanced opportunities for research-based training of graduate and undergraduate students, including members of under-represented groups e.g., females in Computer Science at the University of California at Santa Barbara. For high school students, the CNSI Apprentice Research Program at UCSB brings in high school students every summer. The open source implementations of algorithms resulting from this work will be freely disseminated to the community.
许多应用程序生成的数据可以建模为图形:生物网络,社交网络,生态网络和食物网等。传统的图论和当前大多数图建模、查询和挖掘的研究都集中在图结构本质上是静态的并且不随时间变化的问题上。但真实的世界中的网络在本质上是动态的,具有广泛的时间变化。虽然诸如社交网络和交通网络的网络的拓扑经历逐渐改变(或演进),但是内容(信息流、注释)更快速地改变。在此背景下,本项目旨在通过整合数据库、数据挖掘和算法等技术,开发一套可扩展的动态图查询和挖掘工具。第一个研究重点是研究表征动态图的固有属性,特别是节点的动态可达性结构。它还研究了基于这些属性生成动态图的高保真方法。第二个研究方向是开发动态图结构的摘要技术。这些技术可用于压缩大型图数据集,对未来值进行预测,以及在部分观察下查询信息级联。第三个研究重点是开发在不同连通性约束下挖掘重要动态子图的技术,如固定子图结构,连通子图和光滑子图。这里的目标是使用背景行为的统计特征来发现动态图数据集中的异常模式。最后的研究重点从内容和主题模型的角度重新考虑了前三个研究重点,以了解网络中消息内容与其流量之间的关系。开发的方法将使用一些真实世界的数据集,包括电子邮件数据集,如安然,在Twitter上的转发活动数据集,Facebook的墙帖子,和交通网络进行评估。这项工作的一个重要成果是一个理论上有充分依据和经验验证的框架建模,查询和挖掘的动态图。动态行为的方面,其中网络的结构和它们的内容(信息流,注释等)将考虑改变。研究这种动态网络以及信息如何在其中流动,对于发展动态网络及其演化理论至关重要。这项工作有助于回答诸如幂律适用于动态行为,消息的内容是否可以预测其流动,反之亦然,动态网络中的异常是否可以通过建立经验总结或生成模型来有效挖掘等问题。基于开发的算法的强大开源工具将被发布用于研究,学术和非营利活动。这项研究有望在图算法、图数据库和图挖掘方面产生新的技术,并实现一系列可供科学家使用的工具,最终形成动态图理论。更广泛的影响:拟议的项目将把研究和教育结合起来,将项目的成果纳入研究生研讨会和信息管理研究生课程。该项目将资助一名博士后研究员并培养研究生。该项目为研究生和本科生提供了更多的研究培训机会,包括代表性不足的群体的成员,圣巴巴拉的加州大学计算机科学专业的女学生。对于高中生,UCSB的CNSI学徒研究计划每年夏天都会吸引高中生。这项工作产生的算法的开源实现将免费传播给社区。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ambuj Singh其他文献
Global Human-guided Counterfactual Explanations for Molecular Properties via Reinforcement Learning
通过强化学习对分子特性进行全球人工引导的反事实解释
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Danqing Wang;Antonis Antoniades;Kha;Edwin Zhang;Mert Kosan;Jiachen Li;Ambuj Singh;William Yang Wang;Lei Li - 通讯作者:
Lei Li
A split-face study to evaluate the efficacy of Nd:YAG laser versus radiofrequency cauterization for the treatment of ephelides on face
一项评估 Nd:YAG 激光与射频烧灼治疗面部雀斑疗效的分面研究
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Ambuj Singh;T. Goyal;Pooja Singh - 通讯作者:
Pooja Singh
Intelligent Personality Analysis on Indicators in IoT-MMBD-Enabled Environment
IoT-MMBD环境下的指标智能个性分析
- DOI:
10.1007/978-981-13-8759-3_7 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
R. Rastogi;D. K. Chaturvedi;S. Satya;N. Arora;Piyush Trivedi;Akshay Singh;A. Sharma;Ambuj Singh - 通讯作者:
Ambuj Singh
Intelligent Analysis for Personality Detection on Various Indicators by Clinical Reliable Psychological TTH and Stress Surveys
通过临床可靠的心理TTH和压力调查对各种指标进行人格检测的智能分析
- DOI:
10.1007/978-981-13-9042-5_12 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
R. Rastogi;D. Chaturvedi;S. Satya;N. Arora;Piyush Trivedi;Akshay Singh;A. Sharma;Ambuj Singh - 通讯作者:
Ambuj Singh
Development of Multiscale Biological Image Data Analysis: Review of 2006 International Workshop on Multiscale Biological Imaging, Data Mining and Informatics, Santa Barbara, USA (BII06)
- DOI:
10.1186/1471-2121-8-s1-s1 - 发表时间:
2007-07-10 - 期刊:
- 影响因子:2.700
- 作者:
Manfred Auer;Hanchuan Peng;Ambuj Singh - 通讯作者:
Ambuj Singh
Ambuj Singh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ambuj Singh', 18)}}的其他基金
HDR DSC: Collaborative Research: Central Coast Data Science Partnership: Training a New Generation of Data Scientists
HDR DSC:合作研究:中央海岸数据科学合作伙伴:培训新一代数据科学家
- 批准号:
1924205 - 财政年份:2020
- 资助金额:
$ 49.83万 - 项目类别:
Continuing Grant
III: Small: Explaining heterogeneity within and across evolving networks
III:小:解释不断发展的网络内部和之间的异质性
- 批准号:
1817046 - 财政年份:2018
- 资助金额:
$ 49.83万 - 项目类别:
Standard Grant
IGERT-CIF21: Interdisciplinary Graduate Education Research and Training in Network Science
IGERT-CIF21:网络科学跨学科研究生教育研究和培训
- 批准号:
1258507 - 财政年份:2013
- 资助金额:
$ 49.83万 - 项目类别:
Standard Grant
III: Small: Techniques for Integrated Analysis of Graphs with Applications to Cheminformatics and Bioinformatics
III:小:图集成分析技术及其在化学信息学和生物信息学中的应用
- 批准号:
0917149 - 财政年份:2009
- 资助金额:
$ 49.83万 - 项目类别:
Standard Grant
Scalable Querying and Mining of Graphs
可扩展的图查询和挖掘
- 批准号:
0612327 - 财政年份:2006
- 资助金额:
$ 49.83万 - 项目类别:
Standard Grant
Workshop on Bioinformatics in conjunction with ICDE 2003 to be held in Bangalore, India on March 5-8, 2003.
与 ICDE 2003 联合举办的生物信息学研讨会将于 2003 年 3 月 5 日至 8 日在印度班加罗尔举行。
- 批准号:
0310675 - 财政年份:2003
- 资助金额:
$ 49.83万 - 项目类别:
Standard Grant
A Middleware Testbed for Supporting Flexible Consistency and Mobility
支持灵活一致性和移动性的中间件测试床
- 批准号:
0123985 - 财政年份:2001
- 资助金额:
$ 49.83万 - 项目类别:
Standard Grant
CISE Research Infrastructure: Digital Campus: Scalable Information Services on a Campus-wide Wireless Network
CISE 研究基础设施:数字校园:校园无线网络上的可扩展信息服务
- 批准号:
0080134 - 财政年份:2000
- 资助金额:
$ 49.83万 - 项目类别:
Continuing Grant
Kan: A Platform for Reliable Distributed Objects
Kan:可靠的分布式对象平台
- 批准号:
9972571 - 财政年份:1999
- 资助金额:
$ 49.83万 - 项目类别:
Standard Grant
相似国自然基金
昼夜节律性small RNA在血斑形成时间推断中的法医学应用研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
tRNA-derived small RNA上调YBX1/CCL5通路参与硼替佐米诱导慢性疼痛的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
Small RNA调控I-F型CRISPR-Cas适应性免疫性的应答及分子机制
- 批准号:32000033
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
Small RNAs调控解淀粉芽胞杆菌FZB42生防功能的机制研究
- 批准号:31972324
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
变异链球菌small RNAs连接LuxS密度感应与生物膜形成的机制研究
- 批准号:81900988
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
肠道细菌关键small RNAs在克罗恩病发生发展中的功能和作用机制
- 批准号:31870821
- 批准年份:2018
- 资助金额:56.0 万元
- 项目类别:面上项目
基于small RNA 测序技术解析鸽分泌鸽乳的分子机制
- 批准号:31802058
- 批准年份:2018
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
Small RNA介导的DNA甲基化调控的水稻草矮病毒致病机制
- 批准号:31772128
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
基于small RNA-seq的针灸治疗桥本甲状腺炎的免疫调控机制研究
- 批准号:81704176
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
水稻OsSGS3与OsHEN1调控small RNAs合成及其对抗病性的调节
- 批准号:91640114
- 批准年份:2016
- 资助金额:85.0 万元
- 项目类别:重大研究计划
相似海外基金
Collaborative Research: III: Small: Physics Guided Graph Networks for Modeling Water Dynamics in Freshwater Ecosystems
合作研究:III:小型:用于模拟淡水生态系统中水动力学的物理引导图网络
- 批准号:
2316306 - 财政年份:2023
- 资助金额:
$ 49.83万 - 项目类别:
Standard Grant
Collaborative Research: III: Small: Physics Guided Graph Networks for Modeling Water Dynamics in Freshwater Ecosystems
合作研究:III:小型:用于模拟淡水生态系统中水动力学的物理引导图网络
- 批准号:
2316305 - 财政年份:2023
- 资助金额:
$ 49.83万 - 项目类别:
Standard Grant
III: Small: Predictive Modeling from High-Dimensional, Sparsely and Irregularly Sampled, Longitudinal Data
III:小:根据高维、稀疏和不规则采样的纵向数据进行预测建模
- 批准号:
2226025 - 财政年份:2022
- 资助金额:
$ 49.83万 - 项目类别:
Standard Grant
III: Small: RUI: Collaborative Research: Modeling Pre- and Post- Conditions for Understanding Events
III:小:RUI:协作研究:为理解事件建模前后条件
- 批准号:
2007128 - 财政年份:2020
- 资助金额:
$ 49.83万 - 项目类别:
Interagency Agreement
III: Small: Collaborative Research: Modeling Pre- and Post- Conditions for Understanding Events
III:小:协作研究:为理解事件建模前置条件和后置条件
- 批准号:
2007290 - 财政年份:2020
- 资助金额:
$ 49.83万 - 项目类别:
Continuing Grant
III: Small: Collaborative Research: Social Media Based Analysis of Adverse Drug Events: User Modeling, Signal Reliability, and Signal Validation
III:小:协作研究:基于社交媒体的药物不良事件分析:用户建模、信号可靠性和信号验证
- 批准号:
2039915 - 财政年份:2020
- 资助金额:
$ 49.83万 - 项目类别:
Standard Grant
III: Small: Collaborative Research: Modeling and Managing Extremist Group Influence in Massive Social Media Networks
III:小型:协作研究:在大规模社交媒体网络中建模和管理极端主义团体的影响力
- 批准号:
1909252 - 财政年份:2019
- 资助金额:
$ 49.83万 - 项目类别:
Standard Grant
III: Small: Collaborative Research: Modeling and Managing Extremist Group Influence in Massive Social Media Networks
III:小型:协作研究:在大规模社交媒体网络中建模和管理极端主义团体的影响力
- 批准号:
1909255 - 财政年份:2019
- 资助金额:
$ 49.83万 - 项目类别:
Standard Grant
III: Small: Modeling Multi-Level Connectivity of Brain Dynamics
III:小:模拟大脑动力学的多级连接
- 批准号:
1908299 - 财政年份:2019
- 资助金额:
$ 49.83万 - 项目类别:
Standard Grant
III: Small: Collaborative Research: Building Subjective Knowledge Bases by Modeling Viewpoints
III:小:协作研究:通过建模观点构建主观知识库
- 批准号:
1814955 - 财政年份:2018
- 资助金额:
$ 49.83万 - 项目类别:
Standard Grant














{{item.name}}会员




