III: Small: Collaborative Research: Social Media Based Analysis of Adverse Drug Events: User Modeling, Signal Reliability, and Signal Validation
III:小:协作研究:基于社交媒体的药物不良事件分析:用户建模、信号可靠性和信号验证
基本信息
- 批准号:2039915
- 负责人:
- 金额:$ 15.61万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-05-25 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Adverse drug reactions (ADRs) have been associated with significant morbidity and mortality, and have been a significant cause of hospital admissions, accounting for as much as 5% of all admissions. About 2,000,000 serious ADRs are reported yearly in the US; 100,000 annual deaths are related to adverse drug events; serious ADRs rank 4th to 6th as causes of death. The problem stems from the fact that the ADR profile of a given drug is rarely complete at the time of official approval. The typically limited preapproval evaluation often results in the possibility that when the drug is finally approved for use in the general population (with significant diversity in race, gender, age, lifestyle), some previously unidentified ADRs are often observed. This problem is acute for psychotropic medications, given the fact that most people with psychiatric diseases tend to have other health issues, with the individual taking multiple drugs at the same time (both psychotropic and non-psychotropic), with often unknown interactions between them. Initial results have shown the promise of using social-media data for ADR signal detection. However, these methods are still faced with two critical challenges, namely, signal reliability and biological validation. Thus, this project proposes a detailed study on key determinants of signal reliability: credibility of social media sources, model of the users that generate source content, signal generation from such sources, and validation of the generated signals. This work will be relevant to government agencies charged with drug approval, drug monitoring, and disease monitoring, drug companies, hospitals, and the general public. The impact of the proposed work will go beyond drug surveillance, since the approaches proposed can be adapted for other healthcare problems, and for other scenarios, such as financial markets, and national security. Planned educational activities include outreach to high-school students, and involvement of undergraduate and graduate students. Research results will be disseminated via technical publications in professional journals and conference presentations. The project has three specific aims: (1) Enrich signal reliability in social media analysis of adverse drug events, using credibility analysis, user modeling and signal fusion via deep learning; (2) Signal validation via molecular level analysis; (3) Prototype development and evaluation. The ubiquity, veracity and diversity of data from various social media channels and other sources of user-generated content necessitate a serious consideration of their credibility, recency, uniqueness and salience. To enrich signal reliability, the team will propose novel methods for ADR signal detection using credibility analysis, and for user modeling and signal fusion based on deep leaning techniques. For signal validation, biological support for hypothesized ADRs, essentially connecting high-level observations from social media interactions to potential associations at molecular level networks and pathways, will be used. The results will change the current largely passive approach to post-marketing drug surveillance that relies heavily on voluntary reports, by ensuring reliability in social-media based approaches, thus making the public an integral part of a proactive drug surveillance system. The idea of signal fusion and deep learning for user modeling and signal generation can be extended for other uses beyond drug surveillance.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
药物不良反应(adr)已与显著的发病率和死亡率相关,并已成为住院的一个重要原因,占所有住院的5%。在美国,每年报告的严重不良反应约为200万例;每年有10万例死亡与药物不良事件有关;严重的不良反应排在死亡原因的第四位到第六位。问题的根源在于,在正式批准时,特定药物的不良反应概况很少完整。通常有限的预批准评估通常会导致当药物最终被批准用于普通人群(在种族、性别、年龄、生活方式上存在显著差异)时,经常会观察到一些以前未发现的不良反应。这个问题对于精神药物来说是严重的,因为大多数患有精神疾病的人往往有其他健康问题,个人同时服用多种药物(包括精神药物和非精神药物),它们之间的相互作用往往是未知的。初步结果显示,利用社交媒体数据检测不良反应信号是有希望的。然而,这些方法仍然面临着两个关键的挑战,即信号可靠性和生物学验证。因此,本项目提出了对信号可靠性关键决定因素的详细研究:社交媒体来源的可信度、生成源内容的用户模型、这些来源产生的信号以及产生的信号的验证。这项工作将涉及到负责药物审批、药物监测和疾病监测的政府机构、制药公司、医院和公众。拟议工作的影响将超越药物监测,因为拟议的方法可以适用于其他卫生保健问题,以及金融市场和国家安全等其他情况。计划的教育活动包括向高中生推广,以及本科生和研究生的参与。研究成果将通过专业期刊的技术出版物和会议发言来传播。该项目有三个具体目标:(1)通过可信度分析、用户建模和深度学习的信号融合,丰富社交媒体分析药物不良事件的信号可靠性;(2)分子水平分析信号验证;(3)原型开发与评价。来自各种社交媒体渠道和其他用户生成内容来源的数据无处不在、真实性和多样性,需要认真考虑它们的可信度、近代性、独特性和显著性。为了提高信号的可靠性,该团队将提出使用可信度分析进行ADR信号检测的新方法,以及基于深度学习技术的用户建模和信号融合方法。对于信号验证,将使用假设adr的生物学支持,本质上是将社交媒体互动的高级观察与分子水平网络和途径的潜在关联联系起来。通过确保基于社交媒体的方法的可靠性,研究结果将改变目前很大程度上被动的上市后药物监测方法,这种方法严重依赖于自愿报告,从而使公众成为主动药物监测系统的组成部分。用于用户建模和信号生成的信号融合和深度学习的想法可以扩展到药物监测以外的其他用途。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Examining User Heterogeneity in Digital Experiments
- DOI:10.1145/3578931
- 发表时间:2023-01
- 期刊:
- 影响因子:5.6
- 作者:S. Somanchi;A. Abbasi;Ken Kelley;David G. Dobolyi;T. Yuan
- 通讯作者:S. Somanchi;A. Abbasi;Ken Kelley;David G. Dobolyi;T. Yuan
Getting Personal: A Deep Learning Artifact for Text-Based Measurement of Personality
- DOI:10.1287/isre.2022.1111
- 发表时间:2022-03
- 期刊:
- 影响因子:0
- 作者:Kai Yang;Raymond Y. K. Lau;A. Abbasi
- 通讯作者:Kai Yang;Raymond Y. K. Lau;A. Abbasi
Auto-Debias: Debiasing Masked Language Models with Automated Biased Prompts
- DOI:10.18653/v1/2022.acl-long.72
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Yue Guo-;Yi Yang;A. Abbasi
- 通讯作者:Yue Guo-;Yi Yang;A. Abbasi
Timely, Granular, and Actionable: Designing a Social Listening Platform for Public Health 3.0
及时、精细且可操作:为公共卫生 3.0 设计社交聆听平台
- DOI:
- 发表时间:2024
- 期刊:
- 影响因子:0
- 作者:Kitchens, Brent;Claggett, Jennifer;Abbasi, Ahmed
- 通讯作者:Abbasi, Ahmed
Deep Learning for Adverse Event Detection From Web Search
- DOI:10.1109/tkde.2020.3017786
- 发表时间:2022-06
- 期刊:
- 影响因子:8.9
- 作者:Faizan Ahmad;A. Abbasi;Brent Kitchens;D. Adjeroh;D. Zeng
- 通讯作者:Faizan Ahmad;A. Abbasi;Brent Kitchens;D. Adjeroh;D. Zeng
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ahmed Abbasi其他文献
A Survey on Sentiment Analysis of (Product) Reviews
(产品)评论情感分析调查
- DOI:
10.5120/7234-0242 - 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Nisha Jebaseeli;E. Kirubakaran;Lina Zhou;Pimwadee Chaovalit;Bo Pang;Lillian Lee;Shivakumar Vaithyanathan;Jingbo Wang;Huizhen Zhu;Muhua Tsou;Benjamin K. Ma;Ahmed Abbasi;Hsinchun Chen;A. Ghose;Panagiotis G. Ipeirotis;Michael Gamon;Anthony Aue;Simon Corston - 通讯作者:
Simon Corston
ABCL-650 A Retrospective Single-Center Analysis of Outcome Predictors and Side Effects for Patients With Diffuse Large B-Cell Lymphoma Receiving Autologous Stem Cell Transplant
- DOI:
10.1016/s2152-2650(24)01545-3 - 发表时间:
2024-09-01 - 期刊:
- 影响因子:
- 作者:
Christopher Lawson;Ahmed Abbasi;Alejandro Sica - 通讯作者:
Alejandro Sica
Pathways for Design Research on Artificial Intelligence
人工智能设计研究途径
- DOI:
10.1287/isre.2024.editorial.v35.n2 - 发表时间:
2024 - 期刊:
- 影响因子:4.9
- 作者:
Ahmed Abbasi;Jeffrey Parsons;Gautam Pant;Olivia R. Liu Sheng;Suprateek Sarker - 通讯作者:
Suprateek Sarker
Outcomes of Autologous Stem Cell Transplantation for Relapsed DLBCL in Single Center Serving a Minority Population
- DOI:
10.1182/blood-2022-170633 - 发表时间:
2022-11-15 - 期刊:
- 影响因子:
- 作者:
Tanim Jain;Abdul-Hamid Bazarbachi;Emma Rabinovich;Ahmed Abbasi;Kith Pradhan;Daniel K. Reef;Ryann Quinn;Hiba Narvel;Riya Patel;Rama Al Hamed;Astha Thakkar;Shafia Rahman;Alyssa De Castro;Felisha Joseph;Kailyn Gillick;Jennat Mustafa;Fariha Khatun;Amanda Lombardo;Latoya Townsend Nugent;Michelly Abreu - 通讯作者:
Michelly Abreu
Enabling On-Device Large Language Model Personalization with Self-Supervised Data Selection and Synthesis
通过自我监督的数据选择和合成实现设备上大型语言模型个性化
- DOI:
10.1145/3649329.3655665 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Ruiyang Qin;Jun Xia;Zhenge Jia;Meng Jiang;Ahmed Abbasi;Peipei Zhou;Jingtong Hu;Yiyu Shi - 通讯作者:
Yiyu Shi
Ahmed Abbasi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ahmed Abbasi', 18)}}的其他基金
III: Small: Collaborative Research: Social Media Based Analysis of Adverse Drug Events: User Modeling, Signal Reliability, and Signal Validation
III:小:协作研究:基于社交媒体的药物不良事件分析:用户建模、信号可靠性和信号验证
- 批准号:
1816504 - 财政年份:2018
- 资助金额:
$ 15.61万 - 项目类别:
Standard Grant
EAGER: Collaborative Research: CRUFS: A Unified Framework for Social Media Analysis of Adverse Drug Events
EAGER:协作研究:CRUFS:药物不良事件社交媒体分析的统一框架
- 批准号:
1553109 - 财政年份:2015
- 资助金额:
$ 15.61万 - 项目类别:
Standard Grant
EAGER: Collaborative Research: Computational Public Drug Surveillance
EAGER:合作研究:计算公共药物监测
- 批准号:
1236970 - 财政年份:2012
- 资助金额:
$ 15.61万 - 项目类别:
Standard Grant
相似国自然基金
昼夜节律性small RNA在血斑形成时间推断中的法医学应用研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
tRNA-derived small RNA上调YBX1/CCL5通路参与硼替佐米诱导慢性疼痛的机制研究
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
Small RNA调控I-F型CRISPR-Cas适应性免疫性的应答及分子机制
- 批准号:32000033
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
Small RNAs调控解淀粉芽胞杆菌FZB42生防功能的机制研究
- 批准号:31972324
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
变异链球菌small RNAs连接LuxS密度感应与生物膜形成的机制研究
- 批准号:81900988
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
基于small RNA 测序技术解析鸽分泌鸽乳的分子机制
- 批准号:31802058
- 批准年份:2018
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
肠道细菌关键small RNAs在克罗恩病发生发展中的功能和作用机制
- 批准号:31870821
- 批准年份:2018
- 资助金额:56.0 万元
- 项目类别:面上项目
Small RNA介导的DNA甲基化调控的水稻草矮病毒致病机制
- 批准号:31772128
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
基于small RNA-seq的针灸治疗桥本甲状腺炎的免疫调控机制研究
- 批准号:81704176
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
水稻OsSGS3与OsHEN1调控small RNAs合成及其对抗病性的调节
- 批准号:91640114
- 批准年份:2016
- 资助金额:85.0 万元
- 项目类别:重大研究计划
相似海外基金
Collaborative Research: III: Small: High-Performance Scheduling for Modern Database Systems
协作研究:III:小型:现代数据库系统的高性能调度
- 批准号:
2322973 - 财政年份:2024
- 资助金额:
$ 15.61万 - 项目类别:
Standard Grant
Collaborative Research: III: Small: High-Performance Scheduling for Modern Database Systems
协作研究:III:小型:现代数据库系统的高性能调度
- 批准号:
2322974 - 财政年份:2024
- 资助金额:
$ 15.61万 - 项目类别:
Standard Grant
Collaborative Research: III: Small: A DREAM Proactive Conversational System
合作研究:III:小型:一个梦想的主动对话系统
- 批准号:
2336769 - 财政年份:2024
- 资助金额:
$ 15.61万 - 项目类别:
Standard Grant
Collaborative Research: III: Small: A DREAM Proactive Conversational System
合作研究:III:小型:一个梦想的主动对话系统
- 批准号:
2336768 - 财政年份:2024
- 资助金额:
$ 15.61万 - 项目类别:
Standard Grant
III: Small: Multiple Device Collaborative Learning in Real Heterogeneous and Dynamic Environments
III:小:真实异构动态环境中的多设备协作学习
- 批准号:
2311990 - 财政年份:2023
- 资助金额:
$ 15.61万 - 项目类别:
Standard Grant
Collaborative Research: III: Small: Reconstruction of Diffusion History in Cyber and Human Networks with Applications in Epidemiology and Cybersecurity
合作研究:III:小:重建网络和人类网络中的扩散历史及其在流行病学和网络安全中的应用
- 批准号:
2324770 - 财政年份:2023
- 资助金额:
$ 15.61万 - 项目类别:
Standard Grant
Collaborative Research: III: Small: Physics Guided Graph Networks for Modeling Water Dynamics in Freshwater Ecosystems
合作研究:III:小型:用于模拟淡水生态系统中水动力学的物理引导图网络
- 批准号:
2316306 - 财政年份:2023
- 资助金额:
$ 15.61万 - 项目类别:
Standard Grant
Collaborative Research: III: Small: Efficient and Robust Multi-model Data Analytics for Edge Computing
协作研究:III:小型:边缘计算的高效、稳健的多模型数据分析
- 批准号:
2311596 - 财政年份:2023
- 资助金额:
$ 15.61万 - 项目类别:
Standard Grant
Collaborative Research: III: Small: Efficient and Robust Multi-model Data Analytics for Edge Computing
协作研究:III:小型:边缘计算的高效、稳健的多模型数据分析
- 批准号:
2311598 - 财政年份:2023
- 资助金额:
$ 15.61万 - 项目类别:
Standard Grant
Collaborative Research: III: Small: Reconstruction of Diffusion History in Cyber and Human Networks with Applications in Epidemiology and Cybersecurity
合作研究:III:小:重建网络和人类网络中的扩散历史及其在流行病学和网络安全中的应用
- 批准号:
2324769 - 财政年份:2023
- 资助金额:
$ 15.61万 - 项目类别:
Standard Grant