ATD: Online Multiscale Algorithms for Geometric Density Estimation in High-Dimensions and Persistent Homology of Data for Improved Threat Detection
ATD:用于高维几何密度估计和数据持久同源性的在线多尺度算法,以改进威胁检测
基本信息
- 批准号:1222567
- 负责人:
- 金额:$ 99.36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-09-01 至 2017-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The investigator and his colleagues develop novel ideas to tackle challenges in threat detection. The starting point are insights from multiscale geometric and topological analysis of high-dimensional data: low-intrinsic dimensionality, manifold structures and/or other types of geometric properties of the data are exploited by their novel approaches for tasks such as density estimation, anomaly detection, dimensionality reduction and classification. This approach has the advantage of being adaptive to the low intrinsic dimensionality of the data, thereby leading to algorithms to perform these tasks efficiently, both in terms of sample size require to learn, and in terms of computational costs, leading to a new generation of results and algorithms. Their research focuses on the detection of chemical attacks, which are one of the most pernicious threats, and in particular on hyperspectral imaging for chemical detection, specifically using atmospheric longwave infrared spectroscopy built into the longwave HSI systems. He and his collaborators apply these techniques to HSI data, in the form of images and streaming HSI movies containing chemical plumes, taking advantage of the speed of the proposed techniques.The input data (images, spectra, etc...) for many threat detection problems is typically large, high-dimensional, corrupted by noise, and often subject to distortions due to environmental conditions. Many threat detection tasks fall into one of the following broad categories: regression, classification, anomaly or outlier detection, and changepoint detection. These tasks face the fundamental curse of dimensionality: to achieve a target level of accuracy, the number of observations required is exponential in the number of dimensions of the data. Such dimension may be the number of pixels in a sub-image of interest or the number of spectral bands in a HyperSpectral Image (HSI) or a spectrometer, and may be very large. This makes the analysis of high-dimensional data hopeless unless we can discover a low-dimensional representation of the data, or at least of those features of the data that are sufficient to perform the task at hand: the PI and his colleagues develop novel techniques for discovering such representations and exploiting them to model the data, and detecting anomalies in evolving data. These constructions and algorithms enhance our capability in threat detection, and are key to advance information technology in the field of analysis of large data sets arising in threat detection.
研究人员和他的同事们开发了新的想法来应对威胁检测中的挑战。出发点是从高维数据的多尺度几何和拓扑分析的见解:低内在维数,流形结构和/或其他类型的几何属性的数据是利用他们的新方法的任务,如密度估计,异常检测,降维和分类。这种方法的优点是能够适应数据的低内在维度,从而导致算法有效地执行这些任务,无论是在样本大小方面需要学习,并在计算成本方面,导致新一代的结果和算法。他们的研究重点是检测化学攻击,这是最致命的威胁之一,特别是用于化学检测的高光谱成像,特别是使用长波HSI系统中内置的大气长波红外光谱。他和他的合作者将这些技术应用于HSI数据,以图像和包含化学羽流的HSI电影的形式,利用所提出的技术的速度。输入数据(图像,光谱等)对于许多威胁检测问题来说,通常是大的、高维的、被噪声破坏的,并且经常由于环境条件而受到失真。许多威胁检测任务属于以下几大类之一:回归、分类、异常或离群值检测以及变点检测。这些任务面临着基本的维数灾难:为了达到目标精度水平,所需的观测数量在数据的维数中呈指数级增长。这样的维度可以是感兴趣的子图像中的像素的数量或者高光谱图像(HSI)或光谱仪中的光谱带的数量,并且可以非常大。这使得高维数据的分析变得毫无希望,除非我们能发现数据的低维表示,或者至少是那些足以执行手头任务的数据特征:PI和他的同事开发了新的技术来发现这种表示,并利用它们来建模数据,并检测不断变化的数据中的异常。这些构造和算法增强了我们的威胁检测能力,并且是在威胁检测中产生的大型数据集分析领域推进信息技术的关键。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mauro Maggioni其他文献
A scalable framework for learning the geometry-dependent solution operators of partial differential equations
用于学习偏微分方程的几何依赖解算符的可扩展框架
- DOI:
10.1038/s43588-024-00732-2 - 发表时间:
2024-12-09 - 期刊:
- 影响因子:18.300
- 作者:
Minglang Yin;Nicolas Charon;Ryan Brody;Lu Lu;Natalia Trayanova;Mauro Maggioni - 通讯作者:
Mauro Maggioni
Critical Exponent of Short Even Filters andBurt-Adelson Biorthogonal Wavelets
- DOI:
10.1007/s006050070024 - 发表时间:
2000-11-15 - 期刊:
- 影响因子:0.800
- 作者:
Mauro Maggioni - 通讯作者:
Mauro Maggioni
DH-482888-001 PREDICTING PERSONALIZED CARDIAC ELECTROPHYSIOLOGY USING DEEP LEARNING
DH-482888-001 使用深度学习预测个性化心脏电生理学
- DOI:
10.1016/j.hrthm.2024.03.261 - 发表时间:
2024-05-01 - 期刊:
- 影响因子:5.700
- 作者:
Minglang Yin;Nicolas Charon;Ryan Brody;Lu Lu;Mauro Maggioni;Natalia A. Trayanova - 通讯作者:
Natalia A. Trayanova
PO-01-212 strongA NOVEL DEEP LEARNING MODEL FOR PATIENT-SPECIFIC COMPUTATIONAL MODELING OF CARDIAC ELECTROPHYSIOLOGY/strong
PO-01-212 一种用于患者特异性心脏电生理计算建模的强大新型深度学习模型
- DOI:
10.1016/j.hrthm.2023.03.530 - 发表时间:
2023-05-01 - 期刊:
- 影响因子:5.700
- 作者:
Minglang Yin;Lu Lu;Mauro Maggioni;Natalia A. Trayanova - 通讯作者:
Natalia A. Trayanova
Mauro Maggioni的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mauro Maggioni', 18)}}的其他基金
BIGDATA: F: Compositional Learning, Maps and Transfer: Statistical and Machine Learning on Collections of Data Sets
BIGDATA:F:组合学习、地图和迁移:数据集集合的统计和机器学习
- 批准号:
1837991 - 财政年份:2019
- 资助金额:
$ 99.36万 - 项目类别:
Standard Grant
ATD: Estimation and Anomaly Detection for high-dimensional Data, Maps and Dynamic Processes
ATD:高维数据、地图和动态过程的估计和异常检测
- 批准号:
1737984 - 财政年份:2017
- 资助金额:
$ 99.36万 - 项目类别:
Standard Grant
ATD: Online Multiscale Algorithms for Geometric Density Estimation in High-Dimensions and Persistent Homology of Data for Improved Threat Detection
ATD:用于高维几何密度估计和数据持久同源性的在线多尺度算法,以改进威胁检测
- 批准号:
1756892 - 财政年份:2016
- 资助金额:
$ 99.36万 - 项目类别:
Standard Grant
Collaborative Proposal: SI2-CHE: ExTASY Extensible Tools for Advanced Sampling and analYsis
合作提案:SI2-CHE:用于高级采样和分析的 ExTASY 可扩展工具
- 批准号:
1708353 - 财政年份:2016
- 资助金额:
$ 99.36万 - 项目类别:
Standard Grant
BIGDATA: Collaborative Research: F: From Data Geometries to Information Networks
BIGDATA:协作研究:F:从数据几何到信息网络
- 批准号:
1708553 - 财政年份:2016
- 资助金额:
$ 99.36万 - 项目类别:
Standard Grant
Statistical Learning for High-Dimensional Stochastic Dynamical Systems
高维随机动力系统的统计学习
- 批准号:
1708602 - 财政年份:2016
- 资助金额:
$ 99.36万 - 项目类别:
Continuing Grant
Structured Dictionary Models and Learning for High Resolution Images
高分辨率图像的结构化字典模型和学习
- 批准号:
1724979 - 财政年份:2016
- 资助金额:
$ 99.36万 - 项目类别:
Standard Grant
BIGDATA: Collaborative Research: F: From Data Geometries to Information Networks
BIGDATA:协作研究:F:从数据几何到信息网络
- 批准号:
1546392 - 财政年份:2016
- 资助金额:
$ 99.36万 - 项目类别:
Standard Grant
Statistical Learning for High-Dimensional Stochastic Dynamical Systems
高维随机动力系统的统计学习
- 批准号:
1522651 - 财政年份:2015
- 资助金额:
$ 99.36万 - 项目类别:
Continuing Grant
Structured Dictionary Models and Learning for High Resolution Images
高分辨率图像的结构化字典模型和学习
- 批准号:
1320655 - 财政年份:2013
- 资助金额:
$ 99.36万 - 项目类别:
Standard Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研究基金项目
online SPE/HPLC-ICP-MS多元素形态分析新方法研究荷塘中铬砷镉汞铅的迁移转化规律
- 批准号:21976048
- 批准年份:2019
- 资助金额:65.0 万元
- 项目类别:面上项目
双积分政策下基于Online Review的新能源汽车企业跨链决策优化研究
- 批准号:71964023
- 批准年份:2019
- 资助金额:27.5 万元
- 项目类别:地区科学基金项目
面向Online-to-Offline智能商务的大数据融合与应用
- 批准号:91646204
- 批准年份:2016
- 资助金额:201.0 万元
- 项目类别:重大研究计划
Online-to-Offline商务环境下"切客"一族生活模式挖掘研究
- 批准号:71172046
- 批准年份:2011
- 资助金额:41.0 万元
- 项目类别:面上项目
相似海外基金
AF: Small: Problems in Algorithmic Game Theory for Online Markets
AF:小:在线市场的算法博弈论问题
- 批准号:
2332922 - 财政年份:2024
- 资助金额:
$ 99.36万 - 项目类别:
Standard Grant
NeTS: Small: ML-Driven Online Traffic Analysis at Multi-Terabit Line Rates
NeTS:小型:ML 驱动的多太比特线路速率在线流量分析
- 批准号:
2331111 - 财政年份:2024
- 资助金额:
$ 99.36万 - 项目类别:
Standard Grant
Collaborative Research: HNDS-I: NewsScribe - Extending and Enhancing the Media Cloud Searchable Global Online News Archive
合作研究:HNDS-I:NewsScribe - 扩展和增强媒体云可搜索全球在线新闻档案
- 批准号:
2341858 - 财政年份:2024
- 资助金额:
$ 99.36万 - 项目类别:
Standard Grant
Collaborative Research: HNDS-I: NewsScribe - Extending and Enhancing the Media Cloud Searchable Global Online News Archive
合作研究:HNDS-I:NewsScribe - 扩展和增强媒体云可搜索全球在线新闻档案
- 批准号:
2341859 - 财政年份:2024
- 资助金额:
$ 99.36万 - 项目类别:
Standard Grant
Personalized Online Adaptive Learning System
个性化在线自适应学习系统
- 批准号:
23K20186 - 财政年份:2024
- 资助金额:
$ 99.36万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 99.36万 - 项目类别:
Research Grant
Facilitating circular construction practices in the UK: A data driven online marketplace for waste building materials
促进英国的循环建筑实践:数据驱动的废弃建筑材料在线市场
- 批准号:
10113920 - 财政年份:2024
- 资助金额:
$ 99.36万 - 项目类别:
SME Support
The Information-Attention Tradeoff: Toward an Understanding of the Fundamentals of Online Attention
信息与注意力的权衡:了解在线注意力的基本原理
- 批准号:
2343858 - 财政年份:2024
- 资助金额:
$ 99.36万 - 项目类别:
Continuing Grant
High Quality-of-Experience Real-time Video for Smart Online Shopping
智能在线购物的高质量体验实时视频
- 批准号:
LP230100294 - 财政年份:2024
- 资助金额:
$ 99.36万 - 项目类别:
Linkage Projects
Improving Legal Frameworks to Support Online Child Sex Abuse Prosecutions
完善法律框架以支持在线儿童性虐待起诉
- 批准号:
DP240101649 - 财政年份:2024
- 资助金额:
$ 99.36万 - 项目类别:
Discovery Projects