Tracking the Process of Data-Driven Decision Making: Exploring the Use of the Instructional Systems of Practice (ISOP) Framework to Transform Undergraduate STEM Education

跟踪数据驱动决策的过程:探索使用实践教学系统 (ISOP) 框架来转变本科 STEM 教育

基本信息

  • 批准号:
    1224624
  • 负责人:
  • 金额:
    $ 59.38万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-09-15 至 2015-12-31
  • 项目状态:
    已结题

项目摘要

This project is addressing the measurement of instructional practices and administrative decision-making concerning undergraduate STEM courses. In seeking to enhance the efficacy of pedagogical reforms, researchers and policymakers recommend that educators should utilize data-driven decision making (DDDM) systems. For this to work, the data must be robust, salient to local practice, and supported by adequate technical and administrative systems. Currently little is known about the nature of decision-making processes within STEM departments and pedagogical reform initiatives and this lack of high-quality data about instructional practice on individual campuses has retarded the use of DDDM at the postsecondary level. The goals of this study are to collect high quality data on instructional practice, to prepare reports based on these data for decision makers in higher education, and to subsequently examine the use of these data in decision making about pedagogical reforms. The core tool being used is the Instructional Systems of Practice (ISOP) framework. ISOP was developed as an approach to studying faculty teaching. It is designed to improve on existing data sources on teaching such as self-report surveys, unstructured observations, or student ratings. ISOP defines teaching to be a multi-dimensional practice comprised of course planning, classroom practice, and student interpretations of teaching efficacy. Classroom practice is studied using the Teaching Dimensions Observation Protocol (TDOP). STEM education leaders at three universities are committed to using the ISOP framework to help guide their decision-making. The participation of three universities is expected to define in greater detail the extent to which the ISOP framework can be used to enhance DDDM and efforts to transform undergraduate STEM education. The study will use of a longitudinal mixed methods case study design to study decision making and instructional practice over the course of three years at three research universities with active STEM education projects. Additionally this project is planning to provide professional development opportunities to administrators and STEM education leaders. Intellectual Merit: The ISOP framework is an innovative multidisciplinary approach that draws on established methodologies from cognitive science, naturalistic decision-making, and educational research. It does so in ways that promise to contribute new knowledge about the dynamics that underlie administrative decision-making and faculty practice, and provide better methods and measures for use in STEM education research. Broader Impacts: This research will determine to what extent the ISOP framework can be utilized in unique contexts engaged in undergraduate STEM education initiatives. It has the potential to be of significant value to researchers, educators and policymakers in the US.
本项目旨在解决本科STEM课程教学实践和行政决策的测量问题。为了提高教学改革的有效性,研究人员和政策制定者建议教育工作者应该利用数据驱动的决策制定(DDDM)系统。要做到这一点,数据必须是可靠的,对当地实践具有突出意义,并得到适当的技术和行政系统的支持。目前,人们对STEM部门和教学改革举措的决策过程的性质知之甚少,而且缺乏关于个别校园教学实践的高质量数据,这阻碍了DDDM在高等教育水平的使用。本研究的目的是收集有关教学实践的高质量数据,根据这些数据为高等教育决策者准备报告,并随后检查这些数据在教学改革决策中的使用。所使用的核心工具是实践教学系统(ISOP)框架。ISOP是作为一种研究教师教学的方法而发展起来的。它旨在改进现有的教学数据源,如自我报告调查、非结构化观察或学生评分。ISOP将教学定义为一个多维度的实践,包括课程规划、课堂实践和学生对教学效果的理解。运用教学维度观察协议(TDOP)对课堂实践进行了研究。三所大学的STEM教育领导者承诺使用ISOP框架来帮助指导他们的决策。预计三所大学的参与将更详细地确定ISOP框架可以在多大程度上用于加强DDDM和努力转变本科STEM教育。该研究将使用纵向混合方法案例研究设计来研究三所研究型大学三年的决策和教学实践,这些大学有积极的STEM教育项目。此外,该项目还计划为管理人员和STEM教育领导者提供专业发展机会。智力优势:ISOP框架是一种创新的多学科方法,它借鉴了认知科学、自然主义决策和教育研究的既定方法。这样做的方式有望为行政决策和教师实践背后的动态提供新的知识,并为STEM教育研究提供更好的方法和措施。更广泛的影响:本研究将确定ISOP框架可以在多大程度上用于本科STEM教育计划的独特背景。它有可能对美国的研究人员、教育工作者和政策制定者产生重大价值。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Examining study habits in undergraduate STEM courses from a situative perspective
  • DOI:
    10.1186/s40594-017-0055-6
  • 发表时间:
    2017-01-01
  • 期刊:
  • 影响因子:
    6.7
  • 作者:
    Hora, Matthew T.;Oleson, Amanda K.
  • 通讯作者:
    Oleson, Amanda K.
Toward a Descriptive Science of Teaching: How the TDOP Illuminates the Multidimensional Nature of Active Learning in Postsecondary Classrooms: TOWARD A DESCRIPTIVE SCIENCE OF CLASSROOM
走向教学的描述性科学:TDOP 如何阐明中学后课堂主动学习的多维本质:走向课堂的描述性科学
  • DOI:
    10.1002/sce.21175
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    4.3
  • 作者:
    HORA, MATTHEW T.
  • 通讯作者:
    HORA, MATTHEW T.
Data driven decision-making in the era of accountability: Fostering faculty data cultures for learning
  • DOI:
    10.1353/rhe.2017.0013
  • 发表时间:
    2017-03-01
  • 期刊:
  • 影响因子:
    1.8
  • 作者:
    Hora, Matthew T.;Bouwma-Gearhart, Jana;Park, Hyoung Joon
  • 通讯作者:
    Park, Hyoung Joon
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Matthew Hora其他文献

Matthew Hora的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Matthew Hora', 18)}}的其他基金

RAPID: Investigating the impact of online internships in the midst of the COVID-19 pandemic
RAPID:调查 COVID-19 大流行期间在线实习的影响
  • 批准号:
    2032122
  • 财政年份:
    2020
  • 资助金额:
    $ 59.38万
  • 项目类别:
    Standard Grant
The College Internship Study: A Longitudinal Mixed Methods Study Exploring the Impacts of College Internships on Student Outcomes at HBCUs
大学实习研究:一项纵向混合方法研究,探讨大学实习对 HBCU 学生成绩的影响
  • 批准号:
    1920560
  • 财政年份:
    2019
  • 资助金额:
    $ 59.38万
  • 项目类别:
    Continuing Grant
Exploring factors that shape education & workplace training on essential 21st century competencies: A translational study in four high-STEM job regions
探索塑造教育的因素
  • 批准号:
    1561686
  • 财政年份:
    2016
  • 资助金额:
    $ 59.38万
  • 项目类别:
    Continuing Grant
Exploring the Alignment Among Employer Expectations for STEM Skills and the Design of Education Curricula and Interventions
探索雇主对 STEM 技能的期望与教育课程和干预措施的设计之间的一致性
  • 批准号:
    1348648
  • 财政年份:
    2013
  • 资助金额:
    $ 59.38万
  • 项目类别:
    Standard Grant

相似国自然基金

Neural Process模型的多样化高保真技术研究
  • 批准号:
    62306326
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
磁转动超新星爆发中weak r-process的关键核反应
  • 批准号:
    12375145
  • 批准年份:
    2023
  • 资助金额:
    52.00 万元
  • 项目类别:
    面上项目
多臂Bandit process中的Bayes非参数方法
  • 批准号:
    71771089
  • 批准年份:
    2017
  • 资助金额:
    48.0 万元
  • 项目类别:
    面上项目

相似海外基金

FlexNIR-PD: A resource efficient UK-based production process for patented flexible Near Infrared Sensors for LIDAR, Facial recognition and high-speed data retrieval
FlexNIR-PD:基于英国的资源高效生产工艺,用于 LIDAR、面部识别和高速数据检索的专利柔性近红外传感器
  • 批准号:
    10098113
  • 财政年份:
    2024
  • 资助金额:
    $ 59.38万
  • 项目类别:
    Collaborative R&D
PROMETHEUS: Enabling a Data Rich Additive Manufacturing Process
PROMETHEUS:实现数据丰富的增材​​制造流程
  • 批准号:
    10092251
  • 财政年份:
    2024
  • 资助金额:
    $ 59.38万
  • 项目类别:
    Collaborative R&D
A Process-Based Framework for Open Innovation with Social Media Data
基于流程的社交媒体数据开放式创新框架
  • 批准号:
    DP230102657
  • 财政年份:
    2024
  • 资助金额:
    $ 59.38万
  • 项目类别:
    Discovery Projects
Statistical Methods for Response Process Data
响应过程数据的统计方法
  • 批准号:
    2310664
  • 财政年份:
    2023
  • 资助金额:
    $ 59.38万
  • 项目类别:
    Continuing Grant
Large-scale data analysis for improving the process of personalized remote lifestyle intervention
大规模数据分析,改善个性化远程生活方式干预流程
  • 批准号:
    23K16769
  • 财政年份:
    2023
  • 资助金额:
    $ 59.38万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Nonparametric Total Variation Regression for Multivariate Process Data
多元过程数据的非参数总变差回归
  • 批准号:
    2402544
  • 财政年份:
    2023
  • 资助金额:
    $ 59.38万
  • 项目类别:
    Standard Grant
PLEIADS: Application of an Innovative Know-Your-Customer Digital Platform Which Transforms the KYC Ecosystem by Allowing Clients to Process Data Themselves and Mutualising Client On-Boarding Across Organisations.
PLEIADS:创新的“了解您的客户”数字平台的应用,该平台允许客户自行处理数据并实现跨组织的客户加入,从而改变 KYC 生态系统。
  • 批准号:
    10057410
  • 财政年份:
    2023
  • 资助金额:
    $ 59.38万
  • 项目类别:
    Collaborative R&D
Helping solve fashion’s sustainability crisis by reducing waste related to poor fit: innovation in made-to-measure data capture and manufacturing process [‘Fit Finder’ Trousers]
通过减少与不合身相关的浪费,帮助解决时尚业的可持续发展危机:定制数据采集和制造流程的创新 [“Fit Finder”- 裤子]
  • 批准号:
    10070372
  • 财政年份:
    2023
  • 资助金额:
    $ 59.38万
  • 项目类别:
    Collaborative R&D
Developing a Novel Data-driven Modelling Strategy for Process Flow Diagram Optimisation
开发用于流程图优化的新型数据驱动建模策略
  • 批准号:
    2903759
  • 财政年份:
    2023
  • 资助金额:
    $ 59.38万
  • 项目类别:
    Studentship
Feasibility study on improving video production process using data-efficient Generative-AI models
使用数据高效的生成人工智能模型改进视频制作流程的可行性研究
  • 批准号:
    10081373
  • 财政年份:
    2023
  • 资助金额:
    $ 59.38万
  • 项目类别:
    Collaborative R&D
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了