Statistical Methods for Response Process Data
响应过程数据的统计方法
基本信息
- 批准号:2310664
- 负责人:
- 金额:$ 16.17万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-01 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The development of technology allows for the collection of diverse data but also poses challenges in statistical analysis. This research project aims to develop methods for analyzing response process data generated from recent computer-based educational assessments. Such data provide detailed information on test-takers behaviors that traditional item response data cannot capture. However, the complex format of the data and the diversity of human behaviors make it challenging to utilize the information systematically and efficiently. This project will develop innovative methods to understand and identify individual differences in learning and problem-solving. The resulting information will be valuable for designing individualized instruction or intervention strategies to support student success and advocate inclusiveness and equity in education. Additionally, user-friendly software will be developed for practitioners' use, and this project will provide research training opportunities for graduate and undergraduate students.Response process data are an emerging type of data that tracks a respondent's interaction with computer-based items. This project aims to provide innovative, scalable, and interpretable statistical methods for utilizing rich information in response process data. Specifically, this project will focus on developing 1) a data-driven method for extracting features from process data, 2) a latent variable model for understanding how response process dynamics are driven by respondents' latent traits, and 3) a scalar-on-process regression model for describing statistical relationships between response process and other observed variables. Novel computational algorithms will be designed for statistical inference. The strong interpretability of the models will open the black box created by previous machine-learning-based approaches for process data, making it easier to validate the results and gain a deeper understanding of students' problem-solving behaviors. The outcomes of this project will enable educators to better evaluate students and design effective educational strategies.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
技术的发展使得能够收集各种数据,但也给统计分析带来了挑战。本研究项目旨在开发用于分析最近基于计算机的教育评估产生的反应过程数据的方法。这些数据提供了传统项目反应数据无法捕捉的考生行为的详细信息。然而,数据的复杂格式和人类行为的多样性使得系统和有效地利用信息具有挑战性。该项目将开发创新的方法来理解和识别学习和解决问题的个体差异。由此产生的信息将有助于设计个性化教学或干预战略,以支持学生取得成功,并倡导教育的包容性和公平。此外,还将开发便于使用的软件供从业人员使用,该项目将为研究生和本科生提供研究培训机会。该项目旨在提供创新的,可扩展的和可解释的统计方法,以利用响应过程数据中的丰富信息。具体而言,本项目将重点开发1)用于从过程数据中提取特征的数据驱动方法,2)用于理解响应过程动态如何由受访者的潜在特质驱动的潜在变量模型,以及3)用于描述响应过程和其他观测变量之间的统计关系的标量过程回归模型。新的计算算法将被设计用于统计推断。模型的强大可解释性将打开先前基于机器学习的方法为过程数据创建的黑盒,使其更容易验证结果并更深入地了解学生的问题解决行为。该项目的成果将使教育工作者能够更好地评估学生和设计有效的教育策略。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xueying Tang其他文献
What is the efficacy of dietary, nutraceutical, and probiotic interventions for the management of gastroesophageal reflux disease symptoms? A systematic literature review and meta-analysis
- DOI:
10.1016/j.clnesp.2022.09.015 - 发表时间:
2022-12-01 - 期刊:
- 影响因子:
- 作者:
Zoe Martin;Georgia Spry;Jen Hoult;Isabella R. Maimone;Xueying Tang;Megan Crichton;Skye Marshall - 通讯作者:
Skye Marshall
Bayesian Variable Selection and Estimation Based on Global-Local Shrinkage Priors
基于全局-局部收缩先验的贝叶斯变量选择与估计
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Xueying Tang;Xiaofang Xu;M. Ghosh;P. Ghosh - 通讯作者:
P. Ghosh
Multiple Solutions for Zero-Mass Schrödinger–Poisson Equation with Weighted Hardy–Sobolev Subcritical Exponent
- DOI:
10.1007/s12220-025-01941-5 - 发表时间:
2025-02-25 - 期刊:
- 影响因子:1.500
- 作者:
Xueying Tang;Jiuyang Wei - 通讯作者:
Jiuyang Wei
A preliminary study of the innate immune memory of Kupffer cells induced by PEGylated nanoemulsions.
聚乙二醇化纳米乳诱导库普弗细胞先天免疫记忆的初步研究。
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:10.8
- 作者:
Mengyang Liu;Yuqing Su;Meng Chen;Jia Wang;Min Liu;Yueying Dai;Chunling Wang;Xiang Luo;Chaoyang Lai;Mingqi Liu;Junqiang Ding;Cong Li;Yawei Hu;Xueying Tang;Xinrong Liu;Yihui Deng;Yanzhi Song - 通讯作者:
Yanzhi Song
Single Peak Solutions for Critical N-Laplacian Schrödinger Equation
- DOI:
10.1007/s12220-025-02078-1 - 发表时间:
2025-07-07 - 期刊:
- 影响因子:1.500
- 作者:
Rui Zhu;Xueying Tang;Dongdong Qin - 通讯作者:
Dongdong Qin
Xueying Tang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Advanced Bayesian Methods for Generalized Choice Response Time Models of Decision-Making
用于决策的广义选择响应时间模型的高级贝叶斯方法
- 批准号:
2242962 - 财政年份:2023
- 资助金额:
$ 16.17万 - 项目类别:
Continuing Grant
Development of Realtime Ground Motion and Building Response Prediction Methods Based on Deep Learning and Continuous Observation Network of Seabed, Ground, and Buildings.
基于深度学习和海底、地面和建筑物连续观测网络的实时地面运动和建筑物响应预测方法的开发。
- 批准号:
23K04102 - 财政年份:2023
- 资助金额:
$ 16.17万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Exploring Response Properties of Molecules and Extended Systems Using Theoretical Methods
使用理论方法探索分子和扩展系统的响应特性
- 批准号:
2152633 - 财政年份:2022
- 资助金额:
$ 16.17万 - 项目类别:
Standard Grant
Linking Impulsivity Domains and Subjective Response to Alcohol in Young Adults Using Lab and Daily Assessment Methods
使用实验室和日常评估方法将年轻人的冲动域和对酒精的主观反应联系起来
- 批准号:
10453125 - 财政年份:2022
- 资助金额:
$ 16.17万 - 项目类别:
Linking Impulsivity Domains and Subjective Response to Alcohol in Young Adults Using Lab and Daily Assessment Methods
使用实验室和日常评估方法将年轻人的冲动域和对酒精的主观反应联系起来
- 批准号:
10706464 - 财政年份:2022
- 资助金额:
$ 16.17万 - 项目类别:
Crisis Response, Durable Lessons: A Mixed Methods Examination of a Large-Scale Hoteling Intervention for People Experiencing Homelessness During the COVID-19 Pandemic
危机应对,持久的教训:对 COVID-19 大流行期间无家可归者大规模酒店干预的混合方法检验
- 批准号:
10676182 - 财政年份:2022
- 资助金额:
$ 16.17万 - 项目类别:
New methods for predictive models for univariate and multivariate longitudinal response data
单变量和多变量纵向响应数据预测模型的新方法
- 批准号:
RGPIN-2020-04382 - 财政年份:2022
- 资助金额:
$ 16.17万 - 项目类别:
Discovery Grants Program - Individual
Development of rapid and sensitive bioassay methods to contribute to actinide internal exposure medical response
开发快速、灵敏的生物测定方法,有助于锕系元素内照射医疗反应
- 批准号:
22K12384 - 财政年份:2022
- 资助金额:
$ 16.17万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Creating early diagnosis and severity assessment methods for fetal inflammatory response syndrome combined with neonatal blood inflammation markers and perinatal maternal clinical information
结合新生儿血液炎症标志物和围产期母体临床信息,创建胎儿炎症反应综合征的早期诊断和严重程度评估方法
- 批准号:
22K07936 - 财政年份:2022
- 资助金额:
$ 16.17万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Attention estimation methods based on pupillary response and an information input system based on the methods
基于瞳孔反应的注意力估计方法及基于该方法的信息输入系统
- 批准号:
21K11977 - 财政年份:2021
- 资助金额:
$ 16.17万 - 项目类别:
Grant-in-Aid for Scientific Research (C)