MRI: Development of a GPU-Enabled, Petascale Active Storage Architecture for Data-Intensive Applications in HPC and Cloud Environments

MRI:为 HPC 和云环境中的数据密集型应用程序开发支持 GPU 的 Petascale 主动存储架构

基本信息

  • 批准号:
    1229282
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-10-01 至 2016-09-30
  • 项目状态:
    已结题

项目摘要

Proposal #: 12-29282PI(s): Skjellum, Anthony Bangalore, Purushotham; Hasan, Ragib; Zhang, ChengcuiInstitution: University of Alabama at BirminghamTitle: MRI/Dev.: A GPU-Enabled, Petascale Active Storage Architecture for Data-Intensive Applications in HPC and Cloud EnvironmentsProject Proposed:This project, developing a 2.4 Petabytes (PB) of raw storage instrument to support a variety of research projects in experimental HPC and cloud storage, aims to both increase local resources for scientific computing and act as a testbed for GPU-enabled reliable storage. The instrument enables an increased virtualization of storage, the concurrent access to storage under fault scenarios (e.g., RAID), and a series of data intensive applications. Lessons learned will be leveraged from the existing system in place, whereby the existing system and the new system will be integrated in a way that supports cloud and disaster recovery modes of operation. The project enables the following studies and research projects: - Studying of effective rates of errors and reliability at highly refined levels and seeking means to identify and manage additional classes of errors (e.g., misdirected writes);- Creating semi-analytical models to allow tunable storage characteristics within a lifetime-reliability-performance cost space; - Running applications from data mining (including bioinformatics as drivers for proving the efficacy of the final system), to achieve new science in these data-intensive domains; and- Conducting computer science research aimed at simplifying use of active storage computation.Broader Impacts: This instrumentation increases the institution?s capacity to conduct cutting-edge research in an inexpensive, fast, practical, reliable petascale storage for data-intensive applications. Significant computational power logically close to that storage enables new science. Student training (including underrepresented groups) will be emphasized. The knowledge dissemination through this effort could be significant.
提案号:12-29282PI(s): Skjellum, Anthony Bangalore, Purushotham;哈桑,Ragib;单位:阿拉巴马大学伯明翰分校职称:MRI/Dev项目建议:该项目开发一个2.4 PB (PB)的原始存储仪器,以支持实验HPC和云存储的各种研究项目,旨在增加科学计算的本地资源,并作为gpu支持的可靠存储的测试平台。该仪器能够增加存储的虚拟化,在故障场景(例如RAID)下并发访问存储,以及一系列数据密集型应用。将从现有系统中吸取经验教训,从而将现有系统和新系统以支持云和灾难恢复操作模式的方式集成在一起。该项目能够进行下列研究和研究项目:-在高度精确的水平上研究误差率和可靠性,并寻求查明和管理其他错误类别的方法(例如,错误的写入);-创建半分析模型,允许在终身可靠性性能成本空间内可调存储特性;-运行数据挖掘应用程序(包括生物信息学作为证明最终系统有效性的驱动程序),在这些数据密集型领域实现新科学;-进行旨在简化主动存储计算使用的计算机科学研究。更广泛的影响:这种工具增加了机构?为数据密集型应用提供廉价、快速、实用、可靠的千万亿级存储。逻辑上接近这种存储的强大计算能力使新科学得以实现。将强调学生培训(包括代表性不足的群体)。通过这一努力传播的知识可能是重要的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Purushotham Bangalore其他文献

Exploiting performance characterization of BLAST in the grid
Application Information Services for distributed computing environments
  • DOI:
    10.1016/j.future.2010.08.004
  • 发表时间:
    2011-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Enis Afgan;Purushotham Bangalore;Karolj Skala
  • 通讯作者:
    Karolj Skala

Purushotham Bangalore的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Purushotham Bangalore', 18)}}的其他基金

EF: Collaborative Research: MTM 2: Marine Invertebrate Microbiome Assembly, Diversification, and Coevolution
EF:合作研究:MTM 2:海洋无脊椎动物微生物组组装、多样化和共同进化
  • 批准号:
    2025067
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EF: Collaborative Research: MTM 2: Marine Invertebrate Microbiome Assembly, Diversification, and Coevolution
EF:合作研究:MTM 2:海洋无脊椎动物微生物组组装、多样化和共同进化
  • 批准号:
    2150107
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
CC*DNI Networking Infrastructure: A Dedicated High-Speed Campus Research Network
CC*DNI 网络基础设施:专用高速校园研究网络
  • 批准号:
    1541310
  • 财政年份:
    2016
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
US-Slovenia Workshop: Formalization of Modeling Languages
美国-斯洛文尼亚研讨会:建模语言的形式化
  • 批准号:
    0968596
  • 财政年份:
    2010
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant

相似国自然基金

水稻边界发育缺陷突变体abnormal boundary development(abd)的基因克隆与功能分析
  • 批准号:
    32070202
  • 批准年份:
    2020
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:

相似海外基金

Collaborative Research: CyberTraining: Pilot: Research Workforce Development for Deep Learning Systems in Advanced GPU Cyberinfrastructure
协作研究:网络培训:试点:高级 GPU 网络基础设施中深度学习系统的研究人员开发
  • 批准号:
    2330364
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: CyberTraining: Pilot: Research Workforce Development for Deep Learning Systems in Advanced GPU Cyberinfrastructure
协作研究:网络培训:试点:高级 GPU 网络基础设施中深度学习系统的研究人员开发
  • 批准号:
    2230098
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: CyberTraining: Pilot: Research Workforce Development for Deep Learning Systems in Advanced GPU Cyberinfrastructure
协作研究:网络培训:试点:高级 GPU 网络基础设施中深度学习系统的研究人员开发
  • 批准号:
    2306184
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: CyberTraining: Pilot: Research Workforce Development for Deep Learning Systems in Advanced GPU Cyberinfrastructure
协作研究:网络培训:试点:高级 GPU 网络基础设施中深度学习系统的研究人员开发
  • 批准号:
    2230097
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Development of a GPU-CPU CFD Solver for Turbulent High-Pressure Combusting Flows
开发用于高压湍流燃烧流的 GPU-CPU CFD 求解器
  • 批准号:
    534626-2019
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Development of GPU framework for high-speed analysis of omics data
开发用于组学数据高速分析的GPU框架
  • 批准号:
    21K21281
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Development of the next-generation GPU-based Monte Carlo simulation platform for radiation-induced DNA damage calculations
开发下一代基于 GPU 的蒙特卡罗模拟平台,用于辐射引起的 DNA 损伤计算
  • 批准号:
    10203527
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
Development of a GPU-CPU CFD Solver for Turbulent High-Pressure Combusting Flows
开发用于高压湍流燃烧流的 GPU-CPU CFD 求解器
  • 批准号:
    534626-2019
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Development of a GPU-CPU CFD Solver for Turbulent High-Pressure Combusting Flows
开发用于高压湍流燃烧流的 GPU-CPU CFD 求解器
  • 批准号:
    534626-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 30万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Development of a GPU-CPU CFD Solver for Turbulent High-Pressure Combusting Flows
开发用于高压湍流燃烧流的 GPU-CPU CFD 求解器
  • 批准号:
    528931-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 30万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了