MRI: Development of a GPU-Enabled, Petascale Active Storage Architecture for Data-Intensive Applications in HPC and Cloud Environments
MRI:为 HPC 和云环境中的数据密集型应用程序开发支持 GPU 的 Petascale 主动存储架构
基本信息
- 批准号:1229282
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-10-01 至 2016-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Proposal #: 12-29282PI(s): Skjellum, Anthony Bangalore, Purushotham; Hasan, Ragib; Zhang, ChengcuiInstitution: University of Alabama at BirminghamTitle: MRI/Dev.: A GPU-Enabled, Petascale Active Storage Architecture for Data-Intensive Applications in HPC and Cloud EnvironmentsProject Proposed:This project, developing a 2.4 Petabytes (PB) of raw storage instrument to support a variety of research projects in experimental HPC and cloud storage, aims to both increase local resources for scientific computing and act as a testbed for GPU-enabled reliable storage. The instrument enables an increased virtualization of storage, the concurrent access to storage under fault scenarios (e.g., RAID), and a series of data intensive applications. Lessons learned will be leveraged from the existing system in place, whereby the existing system and the new system will be integrated in a way that supports cloud and disaster recovery modes of operation. The project enables the following studies and research projects: - Studying of effective rates of errors and reliability at highly refined levels and seeking means to identify and manage additional classes of errors (e.g., misdirected writes);- Creating semi-analytical models to allow tunable storage characteristics within a lifetime-reliability-performance cost space; - Running applications from data mining (including bioinformatics as drivers for proving the efficacy of the final system), to achieve new science in these data-intensive domains; and- Conducting computer science research aimed at simplifying use of active storage computation.Broader Impacts: This instrumentation increases the institution?s capacity to conduct cutting-edge research in an inexpensive, fast, practical, reliable petascale storage for data-intensive applications. Significant computational power logically close to that storage enables new science. Student training (including underrepresented groups) will be emphasized. The knowledge dissemination through this effort could be significant.
提案编号:12- 29282 PI:Skjellum,Anthony 班加罗尔,Purushotham; Hasan,Ragib; Zhang,Chengcui机构:位于伯明翰的亚拉巴马大学标题: MRI/器械:一个支持GPU的Petascale主动存储架构,用于HPC和云环境中的数据密集型应用程序项目建议:该项目开发了一个2.4 PB的原始存储工具,以支持实验HPC和云存储中的各种研究项目,旨在增加科学计算的本地资源,并作为支持GPU的可靠存储的测试平台。该仪器能够增强存储的虚拟化,在故障情况下对存储的并发访问(例如,RAID),以及一系列数据密集型应用。将利用现有系统的经验教训,以支持云和灾后恢复运作模式的方式整合现有系统和新系统。该项目使以下研究和研究项目成为可能:-在高度精确的水平上研究有效的错误率和可靠性,并寻求识别和管理其他错误类别的方法(例如,错误定向的写入);- 创建半分析模型,以允许在寿命-可靠性-性能成本空间内可调存储特性;(包括生物信息学作为证明最终系统有效性的驱动力),在这些数据密集型领域实现新的科学;以及-开展计算机科学研究,旨在简化主动存储计算的使用。这种仪器增加了机构?的能力进行前沿研究,在一个廉价,快速,实用,可靠的千万亿次存储数据密集型应用程序。在逻辑上接近这种存储的重要计算能力使新的科学成为可能。将强调学生培训(包括代表性不足的群体)。通过这一努力传播知识可能意义重大。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Purushotham Bangalore其他文献
Exploiting performance characterization of BLAST in the grid
- DOI:
10.1007/s10586-010-0121-z - 发表时间:
2010-02-20 - 期刊:
- 影响因子:4.100
- 作者:
Enis Afgan;Purushotham Bangalore - 通讯作者:
Purushotham Bangalore
Application Information Services for distributed computing environments
- DOI:
10.1016/j.future.2010.08.004 - 发表时间:
2011-02-01 - 期刊:
- 影响因子:
- 作者:
Enis Afgan;Purushotham Bangalore;Karolj Skala - 通讯作者:
Karolj Skala
Purushotham Bangalore的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Purushotham Bangalore', 18)}}的其他基金
EF: Collaborative Research: MTM 2: Marine Invertebrate Microbiome Assembly, Diversification, and Coevolution
EF:合作研究:MTM 2:海洋无脊椎动物微生物组组装、多样化和共同进化
- 批准号:
2025067 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
EF: Collaborative Research: MTM 2: Marine Invertebrate Microbiome Assembly, Diversification, and Coevolution
EF:合作研究:MTM 2:海洋无脊椎动物微生物组组装、多样化和共同进化
- 批准号:
2150107 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
CC*DNI Networking Infrastructure: A Dedicated High-Speed Campus Research Network
CC*DNI 网络基础设施:专用高速校园研究网络
- 批准号:
1541310 - 财政年份:2016
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
US-Slovenia Workshop: Formalization of Modeling Languages
美国-斯洛文尼亚研讨会:建模语言的形式化
- 批准号:
0968596 - 财政年份:2010
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
相似国自然基金
水稻边界发育缺陷突变体abnormal boundary development(abd)的基因克隆与功能分析
- 批准号:32070202
- 批准年份:2020
- 资助金额:58 万元
- 项目类别:面上项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
相似海外基金
Collaborative Research: CyberTraining: Pilot: Research Workforce Development for Deep Learning Systems in Advanced GPU Cyberinfrastructure
协作研究:网络培训:试点:高级 GPU 网络基础设施中深度学习系统的研究人员开发
- 批准号:
2330364 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: CyberTraining: Pilot: Research Workforce Development for Deep Learning Systems in Advanced GPU Cyberinfrastructure
协作研究:网络培训:试点:高级 GPU 网络基础设施中深度学习系统的研究人员开发
- 批准号:
2230098 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: CyberTraining: Pilot: Research Workforce Development for Deep Learning Systems in Advanced GPU Cyberinfrastructure
协作研究:网络培训:试点:高级 GPU 网络基础设施中深度学习系统的研究人员开发
- 批准号:
2306184 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: CyberTraining: Pilot: Research Workforce Development for Deep Learning Systems in Advanced GPU Cyberinfrastructure
协作研究:网络培训:试点:高级 GPU 网络基础设施中深度学习系统的研究人员开发
- 批准号:
2230097 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Development of a GPU-CPU CFD Solver for Turbulent High-Pressure Combusting Flows
开发用于高压湍流燃烧流的 GPU-CPU CFD 求解器
- 批准号:
534626-2019 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Development of GPU framework for high-speed analysis of omics data
开发用于组学数据高速分析的GPU框架
- 批准号:
21K21281 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Development of the next-generation GPU-based Monte Carlo simulation platform for radiation-induced DNA damage calculations
开发下一代基于 GPU 的蒙特卡罗模拟平台,用于辐射引起的 DNA 损伤计算
- 批准号:
10203527 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Development of a GPU-CPU CFD Solver for Turbulent High-Pressure Combusting Flows
开发用于高压湍流燃烧流的 GPU-CPU CFD 求解器
- 批准号:
534626-2019 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Development of a GPU-CPU CFD Solver for Turbulent High-Pressure Combusting Flows
开发用于高压湍流燃烧流的 GPU-CPU CFD 求解器
- 批准号:
534626-2019 - 财政年份:2019
- 资助金额:
$ 30万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Development of a GPU-CPU CFD Solver for Turbulent High-Pressure Combusting Flows
开发用于高压湍流燃烧流的 GPU-CPU CFD 求解器
- 批准号:
528931-2018 - 财政年份:2018
- 资助金额:
$ 30万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's














{{item.name}}会员




