CAREER: Generative Item, Response, and Feedback Models in Assessment and Learning
职业:评估和学习中的生成项目、响应和反馈模型
基本信息
- 批准号:2237676
- 负责人:
- 金额:$ 64.46万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-05-15 至 2028-04-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Personalized tutoring and feedback on performance or knowledge mastery, are two instructional strategies that have been shown to be effective at improving student learning outcomes. However, implementing these strategies, especially at scale, is costly in terms of the human resources required to provide them effectively. The use of Artificial Intelligence (AI) to provide students with feedback and personalized tutoring in digital learning platforms has the potential to reduce the human capital required to provide these services and to service growing numbers of learners effectively. This CAREER project will leverage generative language models (GLMs), a recent innovation in AI machine learning, to estimate learner knowledge levels and identify specific errors from open-ended learner responses. The resulting system will then be able to automatically generate personalized items and feedback, to support teachers and learners. Primarily grounded in middle-school math education with data collection and evaluation supported by ASSISTments and OpenStax, this CAREER project has the potential to benefit many teachers and learners. Other potential outcomes of his CAREER project include activities that expand the access of minority learners to real-world applications of AI and a new course on AI for education. This CAREER project includes three major research threads. First, the project team will develop a family of open-ended item response theory and knowledge tracing frameworks for open-ended math items. The key technical challenge will be to inject learner knowledge states to steer GLMs towards generating personalized response predictions according to each learner’s knowledge on different skills. These models will power teacher dashboard tools and learner error detection tools during tutoring activities. Second, the project team will develop GLM-based automated math item generation methods to meet the needs and interests of each learner and evaluate them in a randomized controlled trial. The key technical challenge will be to control the generated items according to human specifications on item context and both mathematical and language complexity. Third, the project team will develop a GLM-based automated feedback generation framework and explore its usage in both common wrong answer feedback and tutoring dialogue turn generation. The key technical challenge will be to learn how to leverage effective teacher-written feedback messages and use them as input examples for GLMs. The team will also explore learning-from-teacher-edit methods to constantly improve the quality of generated feedback over time.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
个性化辅导和对表现或知识掌握的反馈是两种已被证明能有效提高学生学习效果的教学策略。然而,实施这些战略,特别是大规模实施这些战略,就有效提供这些战略所需的人力资源而言,代价高昂。使用人工智能(AI)在数字学习平台上为学生提供反馈和个性化辅导,有可能减少提供这些服务所需的人力资本,并有效地为越来越多的学习者提供服务。这个CAREER项目将利用人工智能机器学习的最新创新--生成语言模型(GLM)来估计学习者的知识水平,并从开放式学习者的反应中识别特定的错误。由此产生的系统将能够自动生成个性化的项目和反馈,以支持教师和学习者。该项目以中学数学教育为基础,由ASSISTments和OpenStax支持数据收集和评估,有可能使许多教师和学习者受益。他的CAREER项目的其他潜在成果包括扩大少数民族学习者对人工智能现实世界应用的访问的活动,以及关于人工智能教育的新课程。这个职业生涯项目包括三个主要的研究线索。首先,项目团队将为开放式数学项目开发一系列开放式项目反应理论和知识追踪框架。关键的技术挑战将是注入学习者的知识状态,以引导GLM根据每个学习者对不同技能的知识生成个性化的响应预测。这些模型将在辅导活动中为教师仪表板工具和学习者错误检测工具提供动力。其次,项目团队将开发基于GLM的自动数学题生成方法,以满足每个学习者的需求和兴趣,并在随机对照试验中对其进行评估。关键的技术挑战将是根据人类对项目上下文的规范以及数学和语言复杂性来控制生成的项目。第三,项目团队将开发一个基于GLM的自动反馈生成框架,并探索其在常见错误答案反馈和辅导对话轮生成中的使用。关键的技术挑战将是学习如何利用有效的教师书面反馈信息,并将其作为GLM的输入示例。这个奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Automated Distractor and Feedback Generation for Math Multiple-choice Questions via In-context Learning
- DOI:
- 发表时间:2023-08
- 期刊:
- 影响因子:0
- 作者:Hunter McNichols;Wanyong Feng;Jaewook Lee;Alexander Scarlatos;Digory Smith;Simon Woodhead;Andrew S. Lan
- 通讯作者:Hunter McNichols;Wanyong Feng;Jaewook Lee;Alexander Scarlatos;Digory Smith;Simon Woodhead;Andrew S. Lan
Balancing Test Accuracy and Security in Computerized Adaptive Testing
平衡计算机化自适应测试中的测试准确性和安全性
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Feng, W.;Ghosh A.;Sireci, S.;Lan, A.
- 通讯作者:Lan, A.
Algebra Error Classification with Large Language Models
- DOI:10.48550/arxiv.2305.06163
- 发表时间:2023-05
- 期刊:
- 影响因子:0
- 作者:Hunter McNichols;Mengxue Zhang;Andrew S. Lan
- 通讯作者:Hunter McNichols;Mengxue Zhang;Andrew S. Lan
A Conceptual Model for End-to-End Causal Discovery in Knowledge Tracing
知识追踪中端到端因果发现的概念模型
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Kumar, Nischal A.;Feng, W.;Lee, J.;McNichols H.;Ghosh, A.;Lan, A.
- 通讯作者:Lan, A.
Modeling and Analyzing Scorer Preferences in Short-Answer Math Questions
建模和分析简答数学问题中的评分者偏好
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Zhang, M.;Heffernan, N.;Lan, A.
- 通讯作者:Lan, A.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shiting Lan其他文献
Shiting Lan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shiting Lan', 18)}}的其他基金
Collaborative Research: Common Error Diagnostics and Support in Short-answer Math Questions
合作研究:简答数学问题中的常见错误诊断和支持
- 批准号:
2118706 - 财政年份:2021
- 资助金额:
$ 64.46万 - 项目类别:
Standard Grant
Support for Doctoral Students from U.S. Universities to Attend the 12th International Conference on Educational Data Mining (EDM 2019)
支持美国高校博士生参加第十二届教育数据挖掘国际会议(EDM 2019)
- 批准号:
1930635 - 财政年份:2019
- 资助金额:
$ 64.46万 - 项目类别:
Standard Grant
Collaborative Research: Student Affect Detection and Intervention with Teachers in the Loop
合作研究:学生情绪检测和与教师的干预
- 批准号:
1917713 - 财政年份:2019
- 资助金额:
$ 64.46万 - 项目类别:
Standard Grant
相似海外基金
Experiment-numerical-virtual Generative Design for Nondeterministic Impacts
非确定性影响的实验数值虚拟生成设计
- 批准号:
DP240102559 - 财政年份:2024
- 资助金额:
$ 64.46万 - 项目类别:
Discovery Projects
Developing a Census Based Generative Geodemographic Classification System
开发基于人口普查的生成地理人口分类系统
- 批准号:
ES/Z50273X/1 - 财政年份:2024
- 资助金额:
$ 64.46万 - 项目类别:
Research Grant
Collaborative Research: Frameworks: hpcGPT: Enhancing Computing Center User Support with HPC-enriched Generative AI
协作研究:框架:hpcGPT:通过 HPC 丰富的生成式 AI 增强计算中心用户支持
- 批准号:
2411297 - 财政年份:2024
- 资助金额:
$ 64.46万 - 项目类别:
Standard Grant
Collaborative Research: Frameworks: hpcGPT: Enhancing Computing Center User Support with HPC-enriched Generative AI
协作研究:框架:hpcGPT:通过 HPC 丰富的生成式 AI 增强计算中心用户支持
- 批准号:
2411298 - 财政年份:2024
- 资助金额:
$ 64.46万 - 项目类别:
Standard Grant
Assessments for writing with generative artificial intelligence
使用生成人工智能进行写作评估
- 批准号:
DP240100069 - 财政年份:2024
- 资助金额:
$ 64.46万 - 项目类别:
Discovery Projects
Feedback Literacy and AI Ethics: Leveraging Auto-Peer for Productive Interaction with Generative AI Tools in L2 Writing Education in Japan
反馈素养和人工智能道德:在日本二语写作教育中利用 Auto-Peer 与生成式人工智能工具进行富有成效的互动
- 批准号:
24K04103 - 财政年份:2024
- 资助金额:
$ 64.46万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
SeparateSpace: Leveraging generative AI to help separating families who are underserved or excluded by the way family law support is currently delivered.
SeparateSpace:利用生成式人工智能来帮助分离那些因目前提供家庭法支持的方式而服务不足或被排除在外的家庭。
- 批准号:
10100497 - 财政年份:2024
- 资助金额:
$ 64.46万 - 项目类别:
Collaborative R&D
AIGMob: Conditional Generative AI for Fine-grained Urban Mobility Simulation
AIGMob:用于细粒度城市交通模拟的条件生成人工智能
- 批准号:
24K02996 - 财政年份:2024
- 资助金额:
$ 64.46万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Toward Trustworthy Generative AI by Integrating Large Language Model with Knowledge Graph
通过将大型语言模型与知识图相结合,迈向可信赖的生成式人工智能
- 批准号:
24K20834 - 财政年份:2024
- 资助金额:
$ 64.46万 - 项目类别:
Grant-in-Aid for Early-Career Scientists