MRI: Acquisition of a GPU-Accelerated High Performance Computing and Visualization Cluster
MRI:获取 GPU 加速的高性能计算和可视化集群
基本信息
- 批准号:1229709
- 负责人:
- 金额:$ 55.54万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-10-01 至 2015-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Science and engineering researchers across many disciplines have access to increasing amounts of computing power and research data available to support their work. State of the art cyberinfrastructure resources are needed to tackle large computational problems and make massive data accessible to promote superior analysis. This proposal plans for a 32- node GPU/CPU cluster with a storage array and a 5×8 foot tiled display to be located in a visualization theater setting. The equipment will support parallel computing and rendering, data storage, and high resolution imaging as researchers complete externally funded work. In addition, the instrument will be housed at a facility open to both university researchers as well as to local technology companies and partners, and provide partners with cyberinfrastructure access as well. This instrument will support research in multi-scale wind energy forecasting, data-driven modeling for threat reduction in chemical and biological defense, material characterization and modeling, snow hydrology and remote sensing, and fundamental studies on understanding the mechanisms in skeleton development in living systems and how living systems maintain complex three dimensional shapes. Boise State University is recognized as a CUDA Research Center for embracing GPU computing use across multiple research fields. The center?s goal is to develop and apply advanced numerical methods and computational algorithms to science and engineering, where rapid and real-time computations can transform current practice. This instrument would substantially increase computing power and play a key role in advancing research projects.The instrument will directly support Boise State's strategic goal to emerge as a metropolitan research university of distinction. exposure to cutting edge cyberinfrastructure and research can not only benefit researchers, but may also have profound effects on regional students who might otherwise never gain exposure. Faculty will also use the instrument to support externally funded education activities.
许多学科的科学和工程研究人员可以获得越来越多的计算能力和研究数据,以支持他们的工作。需要最先进的网络基础设施资源来解决大型计算问题,并使大量数据可供访问,以促进卓越的分析。该提案计划在可视化影院环境中部署一个带有存储阵列和5×8英尺平铺显示器的32节点GPU/CPU集群。随着研究人员完成外部资助的工作,该设备将支持并行计算和渲染、数据存储和高分辨率成像。此外,该仪器将放置在一个对大学研究人员以及当地技术公司和合作伙伴开放的设施中,并为合作伙伴提供网络基础设施接入。该仪器将支持以下领域的研究:多尺度风能预测、减少化学和生物防御威胁的数据驱动建模、材料特性和建模、雪水文学和遥感,以及了解生命系统骨架发育机制和生命系统如何保持复杂三维形状的基础研究。博伊西州立大学是公认的CUDA研究中心,在多个研究领域采用GPU计算。S的中心目标是开发先进的数值方法和计算算法,并将其应用到科学和工程中,在这些领域,快速和实时的计算可以改变目前的做法。该仪器将大大提高计算能力,并在推进研究项目中发挥关键作用。该仪器将直接支持博伊西州立大学成为一所著名的大都市研究型大学的战略目标。接触尖端的网络基础设施和研究不仅可以使研究人员受益,还可能对本地区的学生产生深远的影响,否则他们可能永远不会获得接触到的机会。教职员工还将使用该工具支持外部资助的教育活动。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Inanc Senocak其他文献
Turbulent Inflow Generation for the Large-Eddy Simulation Technique Through Globally Neutral Buoyancy Perturbations
通过全局中性浮力扰动生成大涡模拟技术的湍流流入
- DOI:
10.2514/6.2016-0340 - 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
C. Umphrey;Inanc Senocak - 通讯作者:
Inanc Senocak
Scientific Computing. An Introductory Survey. Revised Second Edition
- DOI:
10.2514/1.j060261 - 发表时间:
2020-12 - 期刊:
- 影响因子:2.5
- 作者:
Inanc Senocak - 通讯作者:
Inanc Senocak
Multiple steady states and symmetry breaking in a stably stratified, valley-shaped enclosure heated from below
从下方加热的稳定分层的谷形外壳中的多重稳态和对称性破缺
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Patrick J. Stofanak;Cheng;Inanc Senocak - 通讯作者:
Inanc Senocak
An unusual bifurcation scenario in a stably stratified, valley-shaped enclosure heated from below
从下方加热的稳定分层的谷形外壳中出现不寻常的分叉情况
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Patrick J. Stofanak;Cheng;Inanc Senocak - 通讯作者:
Inanc Senocak
Application Of A Bayesian Inference Method To Reconstruct Short‐Range Atmospheric Dispersion Events
- DOI:
10.1063/1.3573624 - 发表时间:
2011-03 - 期刊:
- 影响因子:0
- 作者:
Inanc Senocak - 通讯作者:
Inanc Senocak
Inanc Senocak的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Inanc Senocak', 18)}}的其他基金
Turbulence in the Long-lived, Very Stable Atmospheric Boundary Layer
长期且非常稳定的大气边界层中的湍流
- 批准号:
2203610 - 财政年份:2022
- 资助金额:
$ 55.54万 - 项目类别:
Standard Grant
CDS&E: Collaborative Research: Deep learning enhanced parallel computations of fluid flow around moving boundaries on binarized octrees
CDS
- 批准号:
1953204 - 财政年份:2020
- 资助金额:
$ 55.54万 - 项目类别:
Standard Grant
Route to turbulence in Strongly Stratified Slope Flows
强层化斜坡流中的湍流路径
- 批准号:
1936445 - 财政年份:2019
- 资助金额:
$ 55.54万 - 项目类别:
Standard Grant
I-Corps: Short-term Wind Forecasting Engine
I-Corps:短期风力预报引擎
- 批准号:
1314122 - 财政年份:2013
- 资助金额:
$ 55.54万 - 项目类别:
Standard Grant
CAREER: Multi-scale modeling of short-term forecasting and grid integration of wind energy over complex terrain
职业:复杂地形上风能短期预测和电网整合的多尺度建模
- 批准号:
1056110 - 财政年份:2011
- 资助金额:
$ 55.54万 - 项目类别:
Standard Grant
相似海外基金
Equipment: MRI: Track 1 Acquisition of NVIDIA DGX H100 GPU system for research and education at VCU
设备: MRI:轨道 1 采购 NVIDIA DGX H100 GPU 系统,用于 VCU 的研究和教育
- 批准号:
2316003 - 财政年份:2023
- 资助金额:
$ 55.54万 - 项目类别:
Standard Grant
Equipment: MRI: Track 1 Acquisition of a GPU-Accelerated Computing Cluster for Advanced Optimization and Design in Multidisciplinary Research and Education
设备:MRI:Track 1 获取 GPU 加速计算集群,用于多学科研究和教育中的高级优化和设计
- 批准号:
2320649 - 财政年份:2023
- 资助金额:
$ 55.54万 - 项目类别:
Standard Grant
MRI: Acquisition of a GPU-based High Performance Computing Instrumentation for Smart City Research at Cleveland State University
MRI:克利夫兰州立大学为智能城市研究采购基于 GPU 的高性能计算仪器
- 批准号:
2215388 - 财政年份:2022
- 资助金额:
$ 55.54万 - 项目类别:
Standard Grant
MRI: Acquisition of a GPU-accelerated cluster for research, training and outreach
MRI:获取 GPU 加速集群用于研究、培训和推广
- 批准号:
2215734 - 财政年份:2022
- 资助金额:
$ 55.54万 - 项目类别:
Standard Grant
Research Infrastructure: MRI: Acquisition of a GPU Cluster to Advance the Land Grant Mission at Washington State University Using AI-Driven Research
研究基础设施:MRI:收购 GPU 集群,利用人工智能驱动的研究推进华盛顿州立大学的土地授予任务
- 批准号:
2216108 - 财政年份:2022
- 资助金额:
$ 55.54万 - 项目类别:
Standard Grant
MRI: Acquisition of Cutting-Edge GPU and MPI Nodes for the Interdisciplinary Pitt Center for Research Computing
MRI:为跨学科皮特研究计算中心采购尖端 GPU 和 MPI 节点
- 批准号:
2117681 - 财政年份:2021
- 资助金额:
$ 55.54万 - 项目类别:
Standard Grant
MRI: Acquisition of a GPU/CPU computing cluster for research and education in computational chemistry and materials
MRI:收购 GPU/CPU 计算集群,用于计算化学和材料的研究和教育
- 批准号:
2117956 - 财政年份:2021
- 资助金额:
$ 55.54万 - 项目类别:
Standard Grant
MRI: Acquisition of a GPU Cluster for Multi-Disciplinary Research and Education at University of Nevada, Las Vegas
MRI:内华达大学拉斯维加斯分校收购 GPU 集群用于多学科研究和教育
- 批准号:
2117941 - 财政年份:2021
- 资助金额:
$ 55.54万 - 项目类别:
Standard Grant
MRI: Acquisition of Dolly Sods GPU Cluster for Accelerated High-Performance Computing and Applications in Machine Learning and Artificial Intelligence in West Virginia
MRI:收购 Dolly Sods GPU 集群,以加速西弗吉尼亚州机器学习和人工智能的高性能计算和应用
- 批准号:
2117575 - 财政年份:2021
- 资助金额:
$ 55.54万 - 项目类别:
Standard Grant
MRI: Acquisition of a High-Performance GPU Cluster for Research and Education
MRI:采购用于研究和教育的高性能 GPU 集群
- 批准号:
2018575 - 财政年份:2020
- 资助金额:
$ 55.54万 - 项目类别:
Standard Grant