CDS&E: Collaborative Research: Deep learning enhanced parallel computations of fluid flow around moving boundaries on binarized octrees

CDS

基本信息

  • 批准号:
    1953204
  • 负责人:
  • 金额:
    $ 25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-08-15 至 2023-07-31
  • 项目状态:
    已结题

项目摘要

Computer simulations of heat and fluid flow find applications in many aspects of science and engineering. Notable examples are aerodynamic design of aircrafts and automobiles, and weather forecasting. These simulations are often computationally expensive, and they are performed on supercomputers. Special methods are used to implement the equations of heat and fluid flow as a simulation software. The end goal is to create an accurate computer code that can make optimal use of available computing power. However, this end goal is becoming challenging on modern extreme-scale supercomputers that deploy a large of number of computing processors to work in parallel. Existing algorithms face performance bottlenecks and do not realize the full potential of a modern supercomputer. The project team will develop new algorithms to overcome this performance bottleneck. The successful completion of this award is expected to result in an open-source heat and fluid flow simulation software. The project team will develop educational tutorials to pique the interest of high-school students in new capabilities of computer simulation and machine learning techniques in science and engineering.The technical objective is to enhance parallel performance of simulations of incompressible fluid flow around moving boundaries. A recently developed binarized octree generation technique will be further developed as an open-source parallel adaptive mesh refinement software infrastructure to solve the fluid flow equations on Cartesian domains with deep levels of mesh adaptations. Machine learning techniques and deep neural nets will be adopted in ways to ease potential bottlenecks that are expected to degrade scalability of parallel computations when large number of processors are deployed in simulations. The project team will develop multiple deep learning algorithms such as convolutional neural networks and generative adversarial networks to learn the fluid flow around complex geometries and apply the learning for rapid and accurate field estimation at arbitrary points. To successfully incorporate the effect of boundary conditions at the interface, conditional generative adversarial networks will be trained on different coarse and fine grids to learn the communication pattern among the blocks.This award by the Division of Chemical, Bioengineering, Environmental and Transport Systems within the NSF Directorate of Engineering is jointly supported by the NSF Office of Advanced Cyberinfrastructure.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
热和流体流动的计算机模拟在科学和工程的许多方面都有应用。著名的例子是飞机和汽车的空气动力学设计,以及天气预报。这些模拟通常在计算上很昂贵,而且它们是在超级计算机上执行的。采用特殊的方法将热和流体流动方程作为仿真软件来实现。最终目标是创建精确的计算机代码,以最佳地利用可用的计算能力。然而,在部署大量并行计算处理器的现代超大规模超级计算机上,这一最终目标正变得具有挑战性。现有的算法面临性能瓶颈,并没有实现现代超级计算机的全部潜力。项目团队将开发新的算法来克服这个性能瓶颈。该合同的成功完成有望产生一个开源的热量和流体流动模拟软件。该项目团队将开发教育教程,以激发高中生对科学和工程中计算机模拟和机器学习技术的新能力的兴趣。技术目标是提高不可压缩流体绕运动边界流动模拟的并行性能。最近开发的二值化八叉树生成技术将进一步发展为一种开源的并行自适应网格细化软件基础设施,用于求解具有深度网格自适应的笛卡尔域上的流体流动方程。机器学习技术和深度神经网络将被用于缓解潜在的瓶颈,这些瓶颈预计会在模拟中部署大量处理器时降低并行计算的可扩展性。项目团队将开发多种深度学习算法,如卷积神经网络和生成对抗网络,以学习复杂几何形状周围的流体流动,并将学习应用于任意点的快速准确的现场估计。为了成功地将边界条件的影响纳入界面,条件生成对抗网络将在不同的粗网格和细网格上进行训练,以学习块之间的通信模式。该奖项由美国国家科学基金会工程部化学、生物工程、环境和运输系统部门授予,并得到美国国家科学基金会高级网络基础设施办公室的联合支持。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Investigating and Mitigating Failure Modes in Physics-Informed Neural Networks (PINNs)
研究和减轻物理信息神经网络 (PINN) 中的故障模式
Physics and equality constrained artificial neural networks: Application to forward and inverse problems with multi-fidelity data fusion
  • DOI:
    10.1016/j.jcp.2022.111301
  • 发表时间:
    2022-05-20
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    Basir, Shamsulhaq;Senocak, Inanc
  • 通讯作者:
    Senocak, Inanc
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Inanc Senocak其他文献

Turbulent Inflow Generation for the Large-Eddy Simulation Technique Through Globally Neutral Buoyancy Perturbations
通过全局中性浮力扰动生成大涡模拟技术的湍流流入
  • DOI:
    10.2514/6.2016-0340
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    C. Umphrey;Inanc Senocak
  • 通讯作者:
    Inanc Senocak
Scientific Computing. An Introductory Survey. Revised Second Edition
  • DOI:
    10.2514/1.j060261
  • 发表时间:
    2020-12
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Inanc Senocak
  • 通讯作者:
    Inanc Senocak
Multiple steady states and symmetry breaking in a stably stratified, valley-shaped enclosure heated from below
从下方加热的稳定分层的谷形外壳中的多重稳态和对称性破缺
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Patrick J. Stofanak;Cheng;Inanc Senocak
  • 通讯作者:
    Inanc Senocak
An unusual bifurcation scenario in a stably stratified, valley-shaped enclosure heated from below
从下方加热的稳定分层的谷形外壳中出现不寻常的分叉情况
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Patrick J. Stofanak;Cheng;Inanc Senocak
  • 通讯作者:
    Inanc Senocak
Direct Numerical Simulation of Turbulent Katabatic Slope Flows with an Immersed-Boundary Method
湍流下降坡流的浸入边界法直接数值模拟
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    4.3
  • 作者:
    C. Umphrey;Rey DeLeon;Inanc Senocak
  • 通讯作者:
    Inanc Senocak

Inanc Senocak的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Inanc Senocak', 18)}}的其他基金

Turbulence in the Long-lived, Very Stable Atmospheric Boundary Layer
长期且非常稳定的大气边界层中的湍流
  • 批准号:
    2203610
  • 财政年份:
    2022
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Route to turbulence in Strongly Stratified Slope Flows
强层化斜坡流中的湍流路径
  • 批准号:
    1936445
  • 财政年份:
    2019
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
I-Corps: Short-term Wind Forecasting Engine
I-Corps:短期风力预报引擎
  • 批准号:
    1314122
  • 财政年份:
    2013
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
MRI: Acquisition of a GPU-Accelerated High Performance Computing and Visualization Cluster
MRI:获取 GPU 加速的高性能计算和可视化集群
  • 批准号:
    1229709
  • 财政年份:
    2012
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
CAREER: Multi-scale modeling of short-term forecasting and grid integration of wind energy over complex terrain
职业:复杂地形上风能短期预测和电网整合的多尺度建模
  • 批准号:
    1056110
  • 财政年份:
    2011
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
  • 批准号:
    2348998
  • 财政年份:
    2025
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
  • 批准号:
    2348999
  • 财政年份:
    2025
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: Investigating Southern Ocean Sea Surface Temperatures and Freshening during the Late Pliocene and Pleistocene along the Antarctic Margin
合作研究:调查上新世晚期和更新世沿南极边缘的南大洋海面温度和新鲜度
  • 批准号:
    2313120
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: NSFDEB-NERC: Warming's silver lining? Thermal compensation at multiple levels of organization may promote stream ecosystem stability in response to drought
合作研究:NSFDEB-NERC:变暖的一线希望?
  • 批准号:
    2312706
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: Chain Transform Fault: Understanding the dynamic behavior of a slow-slipping oceanic transform system
合作研究:链变换断层:了解慢滑海洋变换系统的动态行为
  • 批准号:
    2318855
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Collaborative Research: Understanding Environmental and Ecological Controls on Carbon Export and Flux Attenuation near Bermuda
合作研究:了解百慕大附近碳输出和通量衰减的环境和生态控制
  • 批准号:
    2318940
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: Deciphering the mechanisms of marine nitrous oxide cycling using stable isotopes, molecular markers and in situ rates
合作研究:利用稳定同位素、分子标记和原位速率破译海洋一氧化二氮循环机制
  • 批准号:
    2319097
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: URoL:ASC: Determining the relationship between genes and ecosystem processes to improve biogeochemical models for nutrient management
合作研究:URoL:ASC:确定基因与生态系统过程之间的关系,以改进营养管理的生物地球化学模型
  • 批准号:
    2319123
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: Subduction Megathrust Rheology: The Combined Roles of On- and Off-Fault Processes in Controlling Fault Slip Behavior
合作研究:俯冲巨型逆断层流变学:断层上和断层外过程在控制断层滑动行为中的综合作用
  • 批准号:
    2319848
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: CyberTraining: Pilot: PowerCyber: Computational Training for Power Engineering Researchers
协作研究:Cyber​​Training:试点:PowerCyber​​:电力工程研究人员的计算培训
  • 批准号:
    2319895
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了