SEP Collaborative: A Unified Framework for Sustainability in Buildings through Human Mediation
SEP 协作:通过人类调解实现建筑可持续发展的统一框架
基本信息
- 批准号:1230687
- 负责人:
- 金额:$ 67万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-09-15 至 2017-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The NSF Sustainable Energy pathways (SEP) Program, under the umbrella of the NSF Science, Engineering and Education for Sustainability (SEES) initiative, will support the research program of Prof. Suman Banerjee and co-workers at the University of Wisconsin-Madison, and Prof. Sandipan Mishra and co-workers at Rensselaer Polytechnic Institute. The project takes a holistic approach to develop a framework for unified control of commercial and institutional buildings that reduces overall energy consumption through human mediation. The framework consists of multiple components: sensor networks deployed in buildings that will monitor and measure various parameters, e.g., energy, lighting, temperature, humidity, etc. that lead to efficient models; software components that allow human occupants to interact and provide feedback; and actuation outcomes that allow control of building components, such as heating, cooling, airflow and lighting sub-systems and optimize these controls jointly. The novel aspect of this effort is that it combines the following elements in the feedback control of building energy systems: (i) Forecasting of external variables such as energy pricing, energy demand, and weather, as can be determined from the smart grid or the web; (ii) Predicting internal variables such as occupancy, user comfort preferences, and state variables as obtained from predictive dynamic models; (iii) Extracting and then exploiting pattern repetition (daily, weekly, and yearly cycles in temperature, occupancy, usage etc.) in a computationally efficient fashion, an (iv) Incorporating human and psychological factors in the model, by obtaining and processing human-in-the-loop feedback effectively. Through the design of the right human-machine interfaces, creating appropriate incentives for human participation, effective feedback collection, and integrated processing of sensory measurements (obtained from an in-building sensing network) and human inputs, the project aims at providing a by-demand comfort level that is mediated by end-users through their personal communication "apps". This approach differs significantly from the current research and practices of modeling, controlling and optimizing building energy sub-systems in isolation, and providing by-default comfort level everywhere in the building independent of occupancy level and demand level. The project explores techniques that can provide major savings in energy consumption in commercial and institutional buildings leading towards a more sustainable design. The educational component of the project includes a laboratory-based curriculum which includes a cross-disciplinary capstone course, "Smart Energy Laboratory", suitable enhancements to existing courses, and co-development of new campus-wide sustainability certificate programs. Further, multiple campus dormitories and institutional buildings are being incorporated as "living laboratories," thus educating their occupants about green consumption practices. Other aspects of the project provide interactions with local high schools as well as related industry.A significant fraction of energy consumption in the modern world is within buildings. This project is focused on the development of an intelligent control system to manage energy consumption of buildings by actively incorporating human mediation in this process. The unique aspect of this project includes mechanisms by which multiple tenants of a commercial building can participate in the energy management process and allow the various control and actuation functions to efficiently meet their collective needs. The goal is to develop a blueprint for a more sustainable design of buildings. In addition to the significant impact on energy efficiency and sufficiency of next-generation buildings, the techniques being developed here also have transformative impact on sustainability research and sustainable technologies as a whole.
国家科学基金会可持续能源途径(SEP)项目隶属于国家科学基金会可持续发展科学、工程和教育(SEES)倡议,将支持威斯康星大学麦迪逊分校的苏曼·班纳吉教授及其同事和伦斯勒理工学院的桑迪潘·米什拉教授及其同事的研究项目。该项目采用整体方法开发一个框架,统一控制商业和机构建筑,通过人为调解减少整体能源消耗。该框架由多个组件组成:部署在建筑物中的传感器网络将监测和测量各种参数,例如能源、照明、温度、湿度等,从而产生高效的模型;允许人类居住者交互并提供反馈的软件组件;驱动结果允许控制建筑组件,如加热、冷却、气流和照明子系统,并共同优化这些控制。这项工作的新颖之处在于,它在建筑能源系统的反馈控制中结合了以下要素:(i)预测外部变量,如能源定价、能源需求和天气,这些可以从智能电网或网络确定;预测从预测动态模型获得的内部变量,如占用率、用户舒适度偏好和状态变量;(iii)以计算效率高的方式提取并利用模式重复(温度、占用、使用等的每日、每周和每年周期);(iv)通过有效地获取和处理人在环反馈,将人和心理因素纳入模型。通过设计正确的人机界面,为人类参与创造适当的激励机制,有效的反馈收集,以及感官测量(从建筑内传感网络获得)和人类输入的综合处理,该项目旨在提供由最终用户通过其个人通信“应用程序”调节的按需舒适度。这种方法与目前孤立地建模、控制和优化建筑能源子系统的研究和实践有很大的不同,并且在建筑的各个地方提供默认的舒适度,而不依赖于占用水平和需求水平。该项目探索了能够在商业和机构建筑中节省大量能源消耗的技术,从而实现更可持续的设计。该项目的教育部分包括以实验室为基础的课程,其中包括跨学科的顶点课程“智能能源实验室”,对现有课程进行适当的改进,并共同开发新的校园可持续发展证书课程。此外,多个校园宿舍和机构建筑被合并为“生活实验室”,从而教育他们的居住者绿色消费实践。项目的其他方面提供了与当地高中以及相关行业的互动。现代世界能源消耗的很大一部分是在建筑物内。这个项目的重点是开发一个智能控制系统来管理建筑的能源消耗,在这个过程中积极地融入人类的调解。这个项目的独特之处在于,一个商业建筑的多个租户可以参与能源管理过程,并允许各种控制和驱动功能有效地满足他们的集体需求。其目标是为更可持续的建筑设计制定蓝图。除了对能源效率和下一代建筑的充足性产生重大影响外,这里正在开发的技术也对可持续性研究和整体可持续技术产生变革性影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sandipan Mishra其他文献
Fundamental issues in iterative learning controller design: Convergence, robustness, and steady state performance
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
Sandipan Mishra - 通讯作者:
Sandipan Mishra
Predictive control of complex hydronic systems
复杂循环加热系统的预测控制
- DOI:
10.1109/acc.2010.5530469 - 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
V. Chandan;Sandipan Mishra;A. Alleyne - 通讯作者:
A. Alleyne
Advisory Temporal Logic Inference and Controller Design for Semiautonomous Robots
半自主机器人的时态逻辑推理和控制器设计咨询
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:5.6
- 作者:
Zhe Xu;Sayan Saha;Botao Hu;Sandipan Mishra;A. Julius - 通讯作者:
A. Julius
Human-as-advisor in the loop for autonomous lane-keeping
人类作为顾问参与自动车道保持循环
- DOI:
10.23919/acc55779.2023.10156374 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Rene Mai;Sandipan Mishra;A. Julius - 通讯作者:
A. Julius
Motion Blur-Based State Estimation
基于运动模糊的状态估计
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:4.8
- 作者:
J. Tani;Sandipan Mishra;J. Wen - 通讯作者:
J. Wen
Sandipan Mishra的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sandipan Mishra', 18)}}的其他基金
CPS Medium: Collaborative Research: Physics-Informed Learning and Control of Passive and Hybrid Conditioning Systems in Buildings
CPS 媒介:协作研究:建筑物中被动和混合空调系统的物理信息学习和控制
- 批准号:
2241795 - 财政年份:2023
- 资助金额:
$ 67万 - 项目类别:
Standard Grant
CPS: Frontier: Collaborative Research: Data-Driven Cyberphysical Systems
CPS:前沿:协作研究:数据驱动的网络物理系统
- 批准号:
1645648 - 财政年份:2017
- 资助金额:
$ 67万 - 项目类别:
Continuing Grant
CAREER: Multiobjective Learning Control Strategies for Additive Manufacturing
职业:增材制造的多目标学习控制策略
- 批准号:
1254313 - 财政年份:2013
- 资助金额:
$ 67万 - 项目类别:
Standard Grant
High-speed Estimation and Control using Slow-rate Integrative Image Sensors for Adaptive Optics
使用低速集成图像传感器进行自适应光学的高速估计和控制
- 批准号:
1130231 - 财政年份:2011
- 资助金额:
$ 67万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: Elements: ProDM: Developing A Unified Progressive Data Management Library for Exascale Computational Science
协作研究:要素:ProDM:为百亿亿次计算科学开发统一的渐进式数据管理库
- 批准号:
2311757 - 财政年份:2023
- 资助金额:
$ 67万 - 项目类别:
Standard Grant
Collaborative Research: Elements: ProDM: Developing A Unified Progressive Data Management Library for Exascale Computational Science
协作研究:要素:ProDM:为百亿亿次计算科学开发统一的渐进式数据管理库
- 批准号:
2311756 - 财政年份:2023
- 资助金额:
$ 67万 - 项目类别:
Standard Grant
Collaborative Research: CCSS: Towards Energy-Efficient Millimeter Wave Wireless Networks: A Unified Systems and Circuits Framework
合作研究:CCSS:迈向节能毫米波无线网络:统一系统和电路框架
- 批准号:
2242700 - 财政年份:2023
- 资助金额:
$ 67万 - 项目类别:
Standard Grant
Collaborative Research: Elements: ProDM: Developing A Unified Progressive Data Management Library for Exascale Computational Science
协作研究:要素:ProDM:为百亿亿次计算科学开发统一的渐进式数据管理库
- 批准号:
2311758 - 财政年份:2023
- 资助金额:
$ 67万 - 项目类别:
Standard Grant
Collaborative Research: CSR: Medium: Towards A Unified Memory-centric Computing System with Cross-layer Support
协作研究:CSR:中:迈向具有跨层支持的统一的以内存为中心的计算系统
- 批准号:
2310422 - 财政年份:2023
- 资助金额:
$ 67万 - 项目类别:
Continuing Grant
Collaborative Research: CCSS: Towards Energy-Efficient Millimeter Wave Wireless Networks: A Unified Systems and Circuits Framework
合作研究:CCSS:迈向节能毫米波无线网络:统一系统和电路框架
- 批准号:
2242701 - 财政年份:2023
- 资助金额:
$ 67万 - 项目类别:
Standard Grant
Collaborative Research: CSR: Medium: Towards A Unified Memory-centric Computing System with Cross-layer Support
协作研究:CSR:中:迈向具有跨层支持的统一的以内存为中心的计算系统
- 批准号:
2310423 - 财政年份:2023
- 资助金额:
$ 67万 - 项目类别:
Continuing Grant
Collaborative Research: AF: Small: A Unified Framework for Analyzing Adaptive Stochastic Optimization Methods Based on Probabilistic Oracles
合作研究:AF:Small:基于概率预言的自适应随机优化方法分析统一框架
- 批准号:
2139735 - 财政年份:2022
- 资助金额:
$ 67万 - 项目类别:
Standard Grant
U.S.-Ireland R&D Partnership: Collaborative Research: CNS Core: Medium: A unified framework for the emulation of classical and quantum physical layer networks
美国-爱尔兰 R
- 批准号:
2247007 - 财政年份:2022
- 资助金额:
$ 67万 - 项目类别:
Continuing Grant
Collaborative Research: AF: Small: A Unified Framework for Analyzing Adaptive Stochastic Optimization Methods Based on Probabilistic Oracles
合作研究:AF:Small:基于概率预言的自适应随机优化方法分析统一框架
- 批准号:
2140057 - 财政年份:2022
- 资助金额:
$ 67万 - 项目类别:
Standard Grant