CAREER: Multiobjective Learning Control Strategies for Additive Manufacturing
职业:增材制造的多目标学习控制策略
基本信息
- 批准号:1254313
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-06-01 至 2019-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The research objective of this Faculty Early Career Development (CAREER) award is to create system-theoretic design and analysis tools for high-throughput and high-precision control of additive manufacturing. Despite their tremendous potential, additive manufacturing have not yet delivered functional parts at a production scale due to poor process reliability. A key reason for the low reliability is the lack of accurate process models coupled with open-loop process control. To counter this challenge, the unique layer-by-layer material deposition mechanism of additive manufacturing will be exploited by learning algorithms that rely on iterative refinement based on sensor data in conjunction with partial model information. Inspired by multi-objective optimization, the proposed layer-to-layer learning control algorithm will simultaneously address multiple conflicting objectives to deliver acceptable part geometry and mechanical properties, in the presence of modeling errors and uncertainties in operating conditions. Deliverable of this project include (1) design and analysis tools for multi-objective learning control algorithms tailored towards jet-based printing and selective metal melting processes, (2) verification of proposed algorithms on experimental test beds, (3) development of hands-on experimentation and interactive course modules on additive manufacturing and automation at the K-12 level, and (4) training of undergraduate and graduate students for careers in automation, manufacturing, and control. The successful completion of this project will make a strong positive impact on the rapidly expanding billion-dollar additive manufacturing industry by increasing reliability, repeatability, and production rate. Specifically, enhancing reliability and performance of polymer-based additive manufacturing process can have a significant impact on the fabrication of one-off mass-customized parts including biomedical implants, opto-mechanical components, and tissue engineering. On the other hand, reliable metal-based additive manufacturing processes can produce parts for safety-critical applications such as in aviation industry. Through the proposed outreach and education plan, this project will spread awareness about the importance and opportunities in advanced manufacturing, train students in critically needed skills, and inspire talented young engineers to pursue careers in automation, control, and advanced manufacturing.
该学院早期职业发展(Career)奖的研究目标是为添加剂制造的高通量和高精度控制创造系统论设计和分析工具。尽管具有巨大的潜力,但由于工艺可靠性较差,添加剂制造尚未实现规模化生产。可靠性低的一个关键原因是缺乏准确的过程模型和开环过程控制。为了应对这一挑战,添加剂制造独特的逐层材料沉积机制将被依赖于基于传感器数据和部分模型信息的迭代精化的学习算法所利用。受多目标优化的启发,所提出的逐层学习控制算法将同时解决多个相互冲突的目标,以在存在建模误差和操作条件的不确定性的情况下提供可接受的零件几何和机械性能。该项目的成果包括(1)针对喷墨印刷和选择性金属熔化过程量身定做的多目标学习控制算法的设计和分析工具;(2)在实验试验台上验证所提出的算法;(3)在K-12水平上开发关于添加剂制造和自动化的动手实验和互动课程模块;以及(4)为自动化、制造和控制领域的本科生和研究生提供培训。该项目的成功完成将通过提高可靠性、重复性和生产率,对快速扩张的十亿美元添加剂制造业产生强大的积极影响。具体地说,提高基于聚合物的添加剂制造工艺的可靠性和性能可以对一次性大规模定制部件的制造产生重大影响,包括生物医学植入物、光机械部件和组织工程。另一方面,可靠的基于金属的添加剂制造工艺可以生产安全关键应用的部件,例如航空工业。通过拟议的外展和教育计划,该项目将传播对先进制造业的重要性和机会的认识,培训学生迫切需要的技能,并激励有才华的年轻工程师追求自动化、控制和先进制造业的职业生涯。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sandipan Mishra其他文献
Fundamental issues in iterative learning controller design: Convergence, robustness, and steady state performance
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
Sandipan Mishra - 通讯作者:
Sandipan Mishra
Predictive control of complex hydronic systems
复杂循环加热系统的预测控制
- DOI:
10.1109/acc.2010.5530469 - 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
V. Chandan;Sandipan Mishra;A. Alleyne - 通讯作者:
A. Alleyne
Advisory Temporal Logic Inference and Controller Design for Semiautonomous Robots
半自主机器人的时态逻辑推理和控制器设计咨询
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:5.6
- 作者:
Zhe Xu;Sayan Saha;Botao Hu;Sandipan Mishra;A. Julius - 通讯作者:
A. Julius
Human-as-advisor in the loop for autonomous lane-keeping
人类作为顾问参与自动车道保持循环
- DOI:
10.23919/acc55779.2023.10156374 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Rene Mai;Sandipan Mishra;A. Julius - 通讯作者:
A. Julius
Motion Blur-Based State Estimation
基于运动模糊的状态估计
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:4.8
- 作者:
J. Tani;Sandipan Mishra;J. Wen - 通讯作者:
J. Wen
Sandipan Mishra的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sandipan Mishra', 18)}}的其他基金
CPS Medium: Collaborative Research: Physics-Informed Learning and Control of Passive and Hybrid Conditioning Systems in Buildings
CPS 媒介:协作研究:建筑物中被动和混合空调系统的物理信息学习和控制
- 批准号:
2241795 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
CPS: Frontier: Collaborative Research: Data-Driven Cyberphysical Systems
CPS:前沿:协作研究:数据驱动的网络物理系统
- 批准号:
1645648 - 财政年份:2017
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
SEP Collaborative: A Unified Framework for Sustainability in Buildings through Human Mediation
SEP 协作:通过人类调解实现建筑可持续发展的统一框架
- 批准号:
1230687 - 财政年份:2012
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
High-speed Estimation and Control using Slow-rate Integrative Image Sensors for Adaptive Optics
使用低速集成图像传感器进行自适应光学的高速估计和控制
- 批准号:
1130231 - 财政年份:2011
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
相似海外基金
Evolutionary computation for expensive bilevel multiobjective problems
昂贵的双层多目标问题的进化计算
- 批准号:
DP220101649 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Discovery Projects
Development of inverse reinforcement learning focusing on the multiobjective nature of humans and autonomous systems: towards zero risk and comfort maximization.
逆向强化学习的发展侧重于人类和自主系统的多目标性质:实现零风险和舒适度最大化。
- 批准号:
22H03665 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
CDS&E: Machine-Learning-Driven Methods for Multiobjective and Inverse Design of van-der-Waals-Material-Based Devices
CDS
- 批准号:
2203625 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Development of Evolutionary Multiobjective Optimization Algorithms and Benchmark Problem Design based on the Analysis of Real-world Problems
基于实际问题分析的进化多目标优化算法和基准问题设计的开发
- 批准号:
22H03664 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Multiobjective optimisation of reservoir operations under uncertainty
不确定性下水库调度多目标优化
- 批准号:
DE210100117 - 财政年份:2021
- 资助金额:
$ 40万 - 项目类别:
Discovery Early Career Researcher Award
Multiobjective Memetic Algorithms for Multi-task Symbolic Regression
用于多任务符号回归的多目标模因算法
- 批准号:
DP200102364 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Discovery Projects
Rule-based Explainable Knowledge Acquisition by Multiobjective Evolutionary Machine Learning
通过多目标进化机器学习获取基于规则的可解释知识
- 批准号:
19K12159 - 财政年份:2019
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Evolutionary Constrained Multiobjective Optimization Utilizing Constraint Satisfaction Values of Solutions
利用解的约束满足值的进化约束多目标优化
- 批准号:
19K20346 - 财政年份:2019
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Development of descent methods for multiobjective optimization and applications
多目标优化下降法的开发及应用
- 批准号:
19K11840 - 财政年份:2019
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Multicriteria/multiobjective Decision Making in Humanitarian Operations - Path planning under Uncertainty
人道主义行动中的多标准/多目标决策——不确定性下的路径规划
- 批准号:
RGPIN-2014-04540 - 财政年份:2018
- 资助金额:
$ 40万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




