CPS Medium: Collaborative Research: Physics-Informed Learning and Control of Passive and Hybrid Conditioning Systems in Buildings
CPS 媒介:协作研究:建筑物中被动和混合空调系统的物理信息学习和控制
基本信息
- 批准号:2241795
- 负责人:
- 金额:$ 41.71万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-01 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This Cyber-Physical Systems (CPS) project will develop advanced artificial intelligence and machine-learning (AI/ML) techniques to harness the extensive untapped climatic resources that exist for direct solar heating, natural ventilation, and radiative and evaporative cooling in buildings. Although these mechanisms for building environment conditioning are colloquially termed "passive," their performance depends strongly on the intelligent control of operable elements such as windows and shading, as well as fans in hybrid systems. Towards this goal, this project will create design methodologies for climate- and occupant-responsive strategies that control these operable elements intelligently in coordination with existing building heating ventilation and air conditioning systems, based on sensor measurements of the indoor and outdoor environments, weather and energy forecasts, occupancy, and occupant preferences. The solutions developed in this project can potentially result in substantial reduction in greenhouse gas emissions generated from space heating, cooling, and ventilation. The developed techniques may be particularly valuable in affordable housing by reducing energy costs under normal conditions and improving passive survivability during extreme events and power outages.Specifically, this project will create intelligent passive and hybrid conditioning systems that optimally leverage climatic resources in the form of temperate outdoor air and sunlight, harness these resources at the building envelope and redistribute them within the building’s microclimates, and learn to respond to changing weather and evolving occupant needs. The project will advance foundational analysis and design tools for a class of physics-informed machine learning models for systems governed by local energy and mass conservation laws. These so-called locally interactive bilinear flow models have broad applicability beyond the specific physical building systems studied in this project. From a fundamental cyber physical systems standpoint, the researchers will establish analytical certificates for learning and control algorithms designed for this class of systems, bridging the gap between purely data-driven strategies and physics-based models. Finally, the project will provide a systematic mechanism to evaluate climate resources available through the intelligent operation of passive systems, bridging a key gap in current understanding. Demonstrations in occupied buildings will provide key insights and evidence to support the applicability of the researched tools in the real world. This effort will also develop and present educational modules to attract middle and high school students to encourage careers in sustainable engineering through the RPI Engineering Ambassadors program; at the same time, project outcomes will also support community engagement with science and technology through the University of Oregon Sustainable City Year program.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个数字物理系统(CPS)项目将开发先进的人工智能和机器学习(AI/ML)技术,以利用现有的大量未开发的气候资源,用于建筑中的直接太阳能加热、自然通风以及辐射和蒸发冷却。尽管这些用于建筑环境调节的机制俗称为“被动”,但它们的性能在很大程度上依赖于对可操作元素的智能控制,如窗户和遮阳板,以及混合系统中的风扇。为了实现这一目标,该项目将根据室内和室外环境的传感器测量、天气和能源预报、居住情况和居住偏好,为气候和居住者反应战略创造设计方法,以与现有建筑供暖通风和空调系统协调,智能地控制这些可操作的要素。该项目中开发的解决方案可能会大幅减少空间供暖、制冷和通风所产生的温室气体排放。开发的技术在经济适用房中可能特别有价值,因为它在正常情况下降低了能源成本,并在极端事件和停电时提高了被动生存能力。具体地说,该项目将创建智能被动和混合空调系统,以温和的室外空气和阳光的形式最佳地利用气候资源,在建筑围护结构中利用这些资源,并在建筑的微气候中重新分配它们,并学习如何应对不断变化的天气和不断变化的居住者需求。该项目将推进一类受当地能量和质量守恒定律管辖的系统的物理信息机器学习模型的基本分析和设计工具。这些所谓的局部交互双线性flow模型在本项目研究的特定物理建筑系统之外具有广泛的适用性。从基本的网络物理系统的角度来看,研究人员将为为这类系统设计的学习和控制算法建立分析证书,弥合纯粹数据驱动的战略和基于物理的模型之间的差距。最后,该项目将提供一个系统的机制,通过被动系统的智能操作来评估可用的气候资源,弥合目前认识上的一个关键差距。在被占领的建筑物中的演示将提供关键的见解和证据,以支持所研究的工具在现实世界中的适用性。这项工作还将开发和提供教育模块,以吸引初中生通过RPI工程大使计划鼓励在可持续工程领域从事职业;同时,项目成果还将通过俄勒冈大学可持续城市年计划支持社区参与科学技术。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sandipan Mishra其他文献
Predictive control of complex hydronic systems
复杂循环加热系统的预测控制
- DOI:
10.1109/acc.2010.5530469 - 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
V. Chandan;Sandipan Mishra;A. Alleyne - 通讯作者:
A. Alleyne
Fundamental issues in iterative learning controller design: Convergence, robustness, and steady state performance
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
Sandipan Mishra - 通讯作者:
Sandipan Mishra
Advisory Temporal Logic Inference and Controller Design for Semiautonomous Robots
半自主机器人的时态逻辑推理和控制器设计咨询
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:5.6
- 作者:
Zhe Xu;Sayan Saha;Botao Hu;Sandipan Mishra;A. Julius - 通讯作者:
A. Julius
Human-as-advisor in the loop for autonomous lane-keeping
人类作为顾问参与自动车道保持循环
- DOI:
10.23919/acc55779.2023.10156374 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Rene Mai;Sandipan Mishra;A. Julius - 通讯作者:
A. Julius
Motion Blur-Based State Estimation
基于运动模糊的状态估计
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:4.8
- 作者:
J. Tani;Sandipan Mishra;J. Wen - 通讯作者:
J. Wen
Sandipan Mishra的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sandipan Mishra', 18)}}的其他基金
CPS: Frontier: Collaborative Research: Data-Driven Cyberphysical Systems
CPS:前沿:协作研究:数据驱动的网络物理系统
- 批准号:
1645648 - 财政年份:2017
- 资助金额:
$ 41.71万 - 项目类别:
Continuing Grant
CAREER: Multiobjective Learning Control Strategies for Additive Manufacturing
职业:增材制造的多目标学习控制策略
- 批准号:
1254313 - 财政年份:2013
- 资助金额:
$ 41.71万 - 项目类别:
Standard Grant
SEP Collaborative: A Unified Framework for Sustainability in Buildings through Human Mediation
SEP 协作:通过人类调解实现建筑可持续发展的统一框架
- 批准号:
1230687 - 财政年份:2012
- 资助金额:
$ 41.71万 - 项目类别:
Continuing Grant
High-speed Estimation and Control using Slow-rate Integrative Image Sensors for Adaptive Optics
使用低速集成图像传感器进行自适应光学的高速估计和控制
- 批准号:
1130231 - 财政年份:2011
- 资助金额:
$ 41.71万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: CPS: Medium: Automating Complex Therapeutic Loops with Conflicts in Medical Cyber-Physical Systems
合作研究:CPS:中:自动化医疗网络物理系统中存在冲突的复杂治疗循环
- 批准号:
2322534 - 财政年份:2024
- 资助金额:
$ 41.71万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: Automating Complex Therapeutic Loops with Conflicts in Medical Cyber-Physical Systems
合作研究:CPS:中:自动化医疗网络物理系统中存在冲突的复杂治疗循环
- 批准号:
2322533 - 财政年份:2024
- 资助金额:
$ 41.71万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: Physics-Model-Based Neural Networks Redesign for CPS Learning and Control
合作研究:CPS:中:基于物理模型的神经网络重新设计用于 CPS 学习和控制
- 批准号:
2311084 - 财政年份:2023
- 资助金额:
$ 41.71万 - 项目类别:
Standard Grant
CPS: Medium: Collaborative Research: Provably Safe and Robust Multi-Agent Reinforcement Learning with Applications in Urban Air Mobility
CPS:中:协作研究:可证明安全且鲁棒的多智能体强化学习及其在城市空中交通中的应用
- 批准号:
2312092 - 财政年份:2023
- 资助金额:
$ 41.71万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: Sensor Attack Detection and Recovery in Cyber-Physical Systems
合作研究:CPS:中:网络物理系统中的传感器攻击检测和恢复
- 批准号:
2333980 - 财政年份:2023
- 资助金额:
$ 41.71万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: An Online Learning Framework for Socially Emerging Mixed Mobility
协作研究:CPS:媒介:社会新兴混合出行的在线学习框架
- 批准号:
2401007 - 财政年份:2023
- 资助金额:
$ 41.71万 - 项目类别:
Standard Grant
CPS: Medium: Collaborative Research: Robust Sensing and Learning for Autonomous Driving Against Perceptual Illusion
CPS:中:协作研究:针对自动驾驶对抗知觉错觉的鲁棒感知和学习
- 批准号:
2235231 - 财政年份:2023
- 资助金额:
$ 41.71万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: Data Driven Modeling and Analysis of Energy Conversion Systems -- Manifold Learning and Approximation
合作研究:CPS:媒介:能量转换系统的数据驱动建模和分析——流形学习和逼近
- 批准号:
2223987 - 财政年份:2023
- 资助金额:
$ 41.71万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: Mutualistic Cyber-Physical Interaction for Self-Adaptive Multi-Damage Monitoring of Civil Infrastructure
合作研究:CPS:中:土木基础设施自适应多损伤监测的互信息物理交互
- 批准号:
2305882 - 财政年份:2023
- 资助金额:
$ 41.71万 - 项目类别:
Standard Grant
CPS Medium: Collaborative Research: Physics-Informed Learning and Control of Passive and Hybrid Conditioning Systems in Buildings
CPS 媒介:协作研究:建筑物中被动和混合空调系统的物理信息学习和控制
- 批准号:
2241796 - 财政年份:2023
- 资助金额:
$ 41.71万 - 项目类别:
Standard Grant














{{item.name}}会员




