Detection and Manipulation of Magnetic Skyrmion Domains in Silicide and Germanide Nanowires for Spintronic Applications

用于自旋电子学应用的硅化物和锗化物纳米线中磁斯格明子域的检测和操纵

基本信息

  • 批准号:
    1231916
  • 负责人:
  • 金额:
    $ 28.88万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-09-01 至 2015-08-31
  • 项目状态:
    已结题

项目摘要

This project seeks to utilize chiral magnetic Skyrmion domains in nanowires of silicides and germanides for magnetic data storage applications. Skyrmions are a novel type of exotic magnetic ordering in which electron spins orient to form a topologically non-trivial whirlpool-like structure. They were recently discovered in non-centrosymmetric B20 monosilicides (MnSi, Fe1-xCoxSi) or monogermanide (FeGe). Skyrmions can be thought of as magnetic knots, quasi-particle-like domains that are stable to small perturbations in magnetic field and temperature and do not pin strongly to the crystal lattice or impurities. Skyrmions strongly couple to electrical currents due to the spin torque interaction therefore much lower critical current density is needed to drive the motion of Skyrmion domains. Skyrmions present novel opportunities for implementing spintronic and magnetic storage device designs. Furthermore, nanowires present an ideal system to realize, detect, and manipulate isolated chiral magnetic Skyrmions in the absence of an applied magnetic field due to the stabilization of the Skyrmion phase in confined one-dimensional geometry. Building on their progress in the growth of metal silicide and germanide nanowires and the expertise in spintronic device investigations using nanowire building blocks,PI plan to observe, measure, and manipulate chiral Skyrmions in nanowires of non-centrosymmetric B20 silicides, such as Fe1-xCoxSi and MnSi. Specifically, through an international collaboration with the University of Tokyo, Lorentz transmission electron microscopy will be used to visualize Skyrmions in these nanowires. Furthermore, topological Hall effect due to Skyrmions will be electrically measured in nanowires. Finally, the emergent dynamics of Skyrmions and their motions will be investigated in nanowire electrical devices. The intellectual merit: This research project presents the first opportunity for observing and electrically detecting Skyrmion motion by integrating existing nanowire materials with careful device and physical studies. Nanowire geometry has several advantages over thin film and bulk samples and is better suited for demonstrating such novel phenomenon therefore nanowires can serve as a model material platform that takes the study of Skyrmions from the fundamental physics and to more applied device work and eventual applications. Due to their unique and superior properties, Skyrmions have advantages over the conventional domain walls in metallic ferromagnets. The realization and electrical detection of ground state isolated Skyrmions in nanowires would demonstrate the proof-of-concept for utilizing Skyrmions for magnetic storage. The broader impact of the project includes that the success of the project will open up new design concepts for magnetic memory and spintronic devices with low-power, enhanced performance, and mass data storage, therefore bringing broad technological impacts. Education and outreach is closely integrated with active research in this project by recruiting underrepresented undergraduate students to participate in nanotechnology research in spintronic materials and devices, and by further developing a nanotechnology workshop for high school students and teachers. Used computer hard drives and integrated circuit chips will be examined during the workshop to allow students to learn basic concepts in spintronics and nanoelectrics and how they connect to digital gadgets, encouraging their interest in science and engineering.
本计画旨在利用矽化物及锗化物奈米线之手性磁性Skyrmion畴,以应用于磁性资料储存。Skyrmions是一种新型的奇异磁有序,其中电子自旋定向形成拓扑非平凡的类水池结构。它们最近在非中心对称的B20单硅化物(MnSi,Fe 1-xCoxSi)或单锗化物(FeGe)中被发现。Skyrmions可以被认为是磁结,准粒子状的域,在磁场和温度的小扰动下是稳定的,并且不会强烈地钉扎到晶格或杂质。由于自旋力矩相互作用,Skyrmion强烈耦合到电流,因此需要低得多的临界电流密度来驱动Skyrmion畴的运动。Skyrmions为实现自旋电子和磁存储器件设计提供了新的机会。 此外,纳米线提出了一个理想的系统来实现,检测和操纵孤立的手性磁性Skyrmion在没有外加磁场的情况下,由于稳定的Skyrmion相在受限的一维几何形状。 基于他们在金属硅化物和锗化物纳米线生长方面的进展以及使用纳米线构建块进行自旋电子器件研究的专业知识,PI计划观察,测量和操纵非中心对称B20硅化物纳米线中的手性Skyrmions,如Fe 1-xCoxSi和MnSi。具体来说,通过与东京大学的国际合作,洛伦兹透射电子显微镜将用于可视化这些纳米线中的Skyrmions。此外,由于Skyrmions拓扑霍尔效应将在纳米线电测量。最后,我们将探讨奈米电子元件中Skyrmions的涌现动力学及其运动。智力价值:该研究项目通过将现有的纳米线材料与仔细的设备和物理研究相结合,首次提供了观察和电学检测Skyrmion运动的机会。纳米线的几何形状有几个优点,薄膜和散装样品,更适合于证明这种新的现象,因此纳米线可以作为一个模型材料平台,需要从基础物理研究Skyrmions和更多的应用设备的工作和最终的应用。由于其独特的和上级的性能,Skyrmions具有优于传统的金属铁磁体畴壁。在纳米线中实现和电检测基态隔离Skyrmions将证明利用Skyrmions进行磁存储的概念验证。该项目的更广泛影响包括,该项目的成功将为低功耗,增强性能和大容量数据存储的磁存储器和自旋电子器件开辟新的设计概念,从而带来广泛的技术影响。教育和推广是紧密结合在这个项目中的积极研究,招募代表性不足的本科生参加纳米技术研究的自旋电子材料和设备,并进一步发展为高中学生和教师的纳米技术研讨会。在工作坊期间,学生将研究二手电脑硬盘和集成电路芯片,让学生学习自旋电子学和纳米电子学的基本概念,以及它们如何连接到数字小工具,从而激发他们对科学和工程的兴趣。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Song Jin其他文献

Mathematical model for pressure losses in the hemodialysis graft vascular circuit.
血液透析移植血管回路中压力损失的数学模型。
Data-driven pre-stack AVO inversion method based on fast orthogonal dictionary
基于快速正交字典的数据驱动叠前AVO反演方法
Compound relaxation oscillations connected by pulse-shaped explosion
  • DOI:
    10.7498/aps.69.20191812
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    1
  • 作者:
    Song Jin;Wei Meng-Ke;Jiang Wen-An;Zhang Xiao-Fang;Han Xiu-Jing;Bi Qin-Sheng
  • 通讯作者:
    Bi Qin-Sheng
Managing availability improvement efforts with importance measures and optimization
通过重要性衡量和优化来管理可用性改进工作
Network Utility Maximization in Wireless Networks Over Fading Channels With Uncertain Distribution
无线网络中分布不确定的衰落信道上的网络效用最大化
  • DOI:
    10.1109/lcomm.2017.2653122
  • 发表时间:
    2017-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Song Jin;Rongfei Fan;Gongpu Wang;Xiangyuan Bu
  • 通讯作者:
    Xiangyuan Bu

Song Jin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Song Jin', 18)}}的其他基金

Collaborative Research: DMREF: Deep learning guided twistronics for self-assembled quantum optoelectronics
合作研究:DMREF:用于自组装量子光电子学的深度学习引导双电子学
  • 批准号:
    2323470
  • 财政年份:
    2023
  • 资助金额:
    $ 28.88万
  • 项目类别:
    Standard Grant
CAS: Design and Mechanistic Understanding of Emerging Metal Chalcogenide Electrocatalysts for Selective Two-Electron Oxygen Reduction
CAS:用于选择性双电子氧还原的新兴金属硫属化物电催化剂的设计和机理理解
  • 批准号:
    2247519
  • 财政年份:
    2023
  • 资助金额:
    $ 28.88万
  • 项目类别:
    Continuing Grant
CAS: Design and Mechanistic Understanding of Selective Electrocatalysts Based on Earth-Abundant Metal Compounds
CAS:基于地球储量丰富的金属化合物的选择性电催化剂的设计和机理理解
  • 批准号:
    1955074
  • 财政年份:
    2020
  • 资助金额:
    $ 28.88万
  • 项目类别:
    Continuing Grant
Creation, Detection, and Manipulation of Isolated Magnetic Skyrmions in Nanowires for Magnetic Storage Applications
用于磁存储应用的纳米线中孤立的磁性斯格明子的创建、检测和操作
  • 批准号:
    1609585
  • 财政年份:
    2016
  • 资助金额:
    $ 28.88万
  • 项目类别:
    Standard Grant
Screw Dislocation-Driven Growth of Complex Nanomaterials
螺旋位错驱动的复杂纳米材料的生长
  • 批准号:
    1508558
  • 财政年份:
    2015
  • 资助金额:
    $ 28.88万
  • 项目类别:
    Continuing Grant
Fundamental Investigation and Development of Screw Dislocation-Driven Nanowire Growth
螺旋位错驱动纳米线生长的基础研究和发展
  • 批准号:
    1106184
  • 财政年份:
    2011
  • 资助金额:
    $ 28.88万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSF/DOE Thermoelectric Partnership: High-Performance Thermoelectric Devices Based on Abundant Silicide Materials for Vehicle Waste Heat Recovery
合作研究:NSF/DOE 热电合作伙伴关系:基于丰富硅化物材料的高性能热电器件,用于汽车废热回收
  • 批准号:
    1048625
  • 财政年份:
    2010
  • 资助金额:
    $ 28.88万
  • 项目类别:
    Continuing Grant
CAREER: Synthesis, Characterization and Physical Properties of One-Dimensional Rare Earth Chalcogenide Nanomaterials
职业:一维稀土硫族化物纳米材料的合成、表征和物理性能
  • 批准号:
    0548232
  • 财政年份:
    2006
  • 资助金额:
    $ 28.88万
  • 项目类别:
    Continuing Grant

相似国自然基金

智能微型机械手的飞秒激光加工及光/磁操纵性能研究
  • 批准号:
    62375073
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
柔性磁畴壁型磁振子波导中自旋波的应力操纵
  • 批准号:
    12364019
  • 批准年份:
    2023
  • 资助金额:
    31 万元
  • 项目类别:
    地区科学基金项目
超导材料表面低维磁性结构的研究
  • 批准号:
    11874042
  • 批准年份:
    2018
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目
细胞粘附蛋白的单分子操纵研究
  • 批准号:
    11874309
  • 批准年份:
    2018
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目
氟中毒机制单分子研究
  • 批准号:
    11864006
  • 批准年份:
    2018
  • 资助金额:
    46.0 万元
  • 项目类别:
    地区科学基金项目
诱导型手性微纳磁体中自旋波通道操纵与特性调控的模拟研究
  • 批准号:
    11774069
  • 批准年份:
    2017
  • 资助金额:
    62.0 万元
  • 项目类别:
    面上项目
磁螺菌硝酸还原酶操纵子调控机制及在生物矿化中的作用
  • 批准号:
    31570037
  • 批准年份:
    2015
  • 资助金额:
    62.0 万元
  • 项目类别:
    面上项目
机械力引起的蛋白质去折叠的全原子系综动力学模拟与单分子操控实验的对比研究
  • 批准号:
    11574310
  • 批准年份:
    2015
  • 资助金额:
    73.0 万元
  • 项目类别:
    面上项目
外力作用下蛋白质折叠与去折叠的单分子操纵研究
  • 批准号:
    11474237
  • 批准年份:
    2014
  • 资助金额:
    92.0 万元
  • 项目类别:
    面上项目
原子尺度下的自旋操纵和自旋输运现象的第一性原理研究
  • 批准号:
    11274146
  • 批准年份:
    2012
  • 资助金额:
    78.0 万元
  • 项目类别:
    面上项目

相似海外基金

Artificial fabrication of 3-dimensional noncollinear magnetic order and magnetization manipulation by spin torque
三维非共线磁序的人工制造和自旋转矩磁化操纵
  • 批准号:
    23H00232
  • 财政年份:
    2023
  • 资助金额:
    $ 28.88万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Low loss transport of slow neutrons with precision phase space manipulation
通过精确相空间操纵实现慢中子的低损耗传输
  • 批准号:
    23H03659
  • 财政年份:
    2023
  • 资助金额:
    $ 28.88万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Dexterous Magnetic Manipulation of Non-Magnetic Objects with Stationary Electromagnetic Dipole-Field Sources
利用固定电磁偶极子场源对非磁性物体进行灵巧的磁操纵
  • 批准号:
    2149585
  • 财政年份:
    2022
  • 资助金额:
    $ 28.88万
  • 项目类别:
    Standard Grant
Material design and electrical manipulation of antiferromagnets with broken time-reversal symmetry
时间反转对称性破缺的反铁磁体的材料设计和电操控
  • 批准号:
    21H04990
  • 财政年份:
    2021
  • 资助金额:
    $ 28.88万
  • 项目类别:
    Grant-in-Aid for Scientific Research (S)
Investigating the magnetic manipulation of the terahertz emission from spintronic structures.
研究自旋电子结构太赫兹发射的磁操纵。
  • 批准号:
    2571455
  • 财政年份:
    2021
  • 资助金额:
    $ 28.88万
  • 项目类别:
    Studentship
Manipulation of spin-optoelectronics under light-matter strong coupling state
光-物质强耦合态下自旋光电子学的操控
  • 批准号:
    21K14605
  • 财政年份:
    2021
  • 资助金额:
    $ 28.88万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Investigating the magnetic manipulation of the terahertz emission from spintronic structures.
研究自旋电子结构太赫兹发射的磁操纵。
  • 批准号:
    2864348
  • 财政年份:
    2021
  • 资助金额:
    $ 28.88万
  • 项目类别:
    Studentship
Highly efficient magnetization manipulation by spin conversion in ferromagnetic ordered alloys
通过铁磁有序合金中的自旋转换进行高效磁化操纵
  • 批准号:
    20H00299
  • 财政年份:
    2020
  • 资助金额:
    $ 28.88万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Manipulation of spin-orbit torque in a spin-orbit ferromagnet single layer for future spin devices
用于未来自旋器件的自旋轨道铁磁体单层中的自旋轨道扭矩的操纵
  • 批准号:
    20F20366
  • 财政年份:
    2020
  • 资助金额:
    $ 28.88万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Turbulence control in boundary layer wind tunnel experiment by magnetic nano-particle manipulation
磁性纳米粒子操纵边界层风洞实验中的湍流控制
  • 批准号:
    20K20541
  • 财政年份:
    2020
  • 资助金额:
    $ 28.88万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Pioneering)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了