Trilayer and Superlattice Half Metal Thin Films
三层和超晶格半金属薄膜
基本信息
- 批准号:1232275
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-08-15 至 2016-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Intellectual Merit:There has been intense interest in silicon based spintronic materials, particularly half-metals, for room temperature device applications. In previous studies, half-metallicity has been predicted in thin films of Mn-doped Si. However, the Mn atoms need to occupy the energetically costly substitutional sites that require breaking of Si-Si bonds. This bond breaking process has been the major obstacle for achieving this class of materials that may take advantage of the mature Si technology. Very recently, the PI has predicted half-metallicity in two Mn/Si/Mn trilayers with Mn concentration at 0.5 monolayer and occupying the energetically favorable interstitial sites, and a 0.5 monolayer hole doping in the spacer layer. These exciting results suggest that half metallic Si-based trilayers and their related superlattices are within reach. This project combines theoretical and experimental efforts to design and realize such trilayer and superlattice pseudo-spin valves of silicon-based half-metal in thin film forms. The search for the ideal half-metallic trilayers and superlattices in ferromagnetic or antiferromagnetic phases, and modifications of existing algorithms to treat transport properties for proposed pseudo-spin valves will provide new knowledge concerning magnetism and electronic properties in layered structures. Doping in the Si spacer layer will be used to enhance the magnetic coupling between the two Mn layers. New algorithms of magnetic susceptibility will allow accurate determination of Curie temperature in any magnetic systems. Structural, magnetic, and magneto-transport measurements will be performed in order to characterize the fabricated structures and compare their properties with theoretical predictions. The use of silicon-based materials would enable rapid development of technological applications for spintronic devices. The synergy of the theoretical and experimental efforts is expected to facilitate the optimal design and fabrication of these novel devices.Broader Impacts:The proposed pseudo-spin valves are expected to exhibit new and intriguing half-metallic properties, which are highly relevant for the development of novel spintronic devices, such as sensors, switches, magnetic memory, and logic devices. Furthermore, new understandings will be gained on: (i) how can the hole doping between two layers of transition metal elements cause the half metallicity and couple the magnetic moments between Mn layers in the trilayers and superlattices? (ii) unique new knowledge about manipulating growth parameters to obtain samples of Si-based trilayer and superlattice pseudo-spin valves with predicted properties by the synthesis method. These advancements will significantly facilitate future developments of spintronic devices. The PIs will actively recruit underrepresented minority students to work with them. They have collaborations with research groups in the US, as well as in Sweden, Germany, China, Spain and Turkey. Graduate students will have the opportunity to interact with leading researchers in the field nationally, as well as internationally. The PIs also strive to integrate research with educational and outreach activities to enhance the learning experience of students from junior high school through graduate school.
智力优势:人们对硅基自旋电子材料,特别是用于室温器件的半金属材料有着浓厚的兴趣。在以前的研究中,已经预测了掺锰硅薄膜中的半金属含量。然而,锰原子需要占据能量昂贵的取代位,这需要打破硅-硅键。这种断键过程一直是获得这类材料的主要障碍,这种材料可能会利用成熟的硅技术。最近,PI预测了两个Mn/Si/Mn三层膜中的半金属性,其中Mn的浓度为0.5单分子层,占据了能量有利的间隙位置,间隔层中有0.5个单分子层空穴掺杂。这些令人兴奋的结果表明,半金属硅基三层膜及其相关的超晶格是可以实现的。本项目将理论和实验相结合,设计并实现了硅基半金属薄膜三层和超晶格赝自旋阀。在铁磁或反铁磁相中寻找理想的半金属三层膜和超晶格,以及对现有算法的修改以处理所提出的伪自旋阀的输运性质,将提供关于层状结构中的磁性和电子性质的新知识。在硅隔离层中的掺杂将用于增强两个锰层之间的磁耦合。磁化率的新算法将允许在任何磁性系统中准确地确定居里温度。将进行结构、磁性和磁输运测量,以表征所制造的结构,并将其性能与理论预测进行比较。硅基材料的使用将使自旋电子器件的技术应用得到快速发展。理论和实验的结合有望促进这些新型器件的优化设计和制造。广泛的影响:所提出的伪自旋阀有望展示出新的和有趣的半金属特性,这些特性与新型自旋电子器件的发展高度相关,如传感器、开关、磁记忆和逻辑器件。此外,还将对以下问题有新的认识:(I)过渡金属元素两层之间的空穴掺杂如何导致半金属性并耦合三层和超晶格中的Mn层之间的磁矩?(Ii)关于操纵生长参数以获得具有预测性质的硅基三层膜和超晶格伪自旋阀样品的独特新知识。这些进展将极大地促进自旋电子器件的未来发展。私校会积极招收代表不足的少数族裔学生与他们一起工作。他们与美国以及瑞典、德国、中国、西班牙和土耳其的研究小组进行了合作。研究生将有机会与国内和国际上该领域的领先研究人员互动。PIs还努力将研究与教育和推广活动结合起来,以提高从初中到研究生院的学生的学习体验。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ching Yao Fong其他文献
Ching Yao Fong的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ching Yao Fong', 18)}}的其他基金
Design and Growth of Si-based Spintronic Materials
硅基自旋电子材料的设计与生长
- 批准号:
0725902 - 财政年份:2007
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
SPIN ELECTRONICS: Spintronics with Novel Half-Metals: Computational Design
自旋电子学:新型半金属自旋电子学:计算设计
- 批准号:
0225007 - 财政年份:2002
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
US-Turkey Cooperative Research: Search for Microscopic Theory for the State-of-the-Art Epitaxial Growth of Semiconductors
美国-土耳其合作研究:寻找最先进半导体外延生长的微观理论
- 批准号:
9872053 - 财政年份:1998
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
相似海外基金
CO2-coupled photothermal catalysis on superlattice structures
超晶格结构上的 CO2 耦合光热催化
- 批准号:
DP240102707 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Discovery Projects
Resonant tunneling diode Terahertz oscillator with superlattice heterostructure for high output power
具有超晶格异质结构的谐振隧道二极管太赫兹振荡器,可实现高输出功率
- 批准号:
24K17329 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Potassium Atoms in 2D Triangular Superlattice
二维三角形超晶格中的钾原子
- 批准号:
2309300 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Investigation of Carrier Transport Process in Undulated Superlattice and Development of High Carrier Density Solar Cells for Hydrogen Production
起伏超晶格中载流子输运过程的研究及高载流子密度制氢太阳能电池的开发
- 批准号:
22KJ0955 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for JSPS Fellows
EAGER: Superlattice-induced polycrystalline and single-crystalline structures in conjugated polymers
EAGER:共轭聚合物中超晶格诱导的多晶和单晶结构
- 批准号:
2203318 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
ECCS-EPSRC Superlattice Architectures for Efficient and Stable Perovskite LEDs
用于高效稳定钙钛矿 LED 的 ECCS-EPSRC 超晶格架构
- 批准号:
EP/V06164X/1 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Research Grant
Self-assembly of modified nanocomposite tectons (NCTs) into superlattice structures for self-healing materials
将改性纳米复合材料(NCT)自组装成超晶格结构,用于自修复材料
- 批准号:
567947-2022 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Postgraduate Scholarships - Doctoral
Realization of integrated high sensitivity electric field sensor using quantum dot superlattice
利用量子点超晶格实现集成高灵敏度电场传感器
- 批准号:
22K04218 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of ferroelectric superlattice thin films for next-generation energy storage devices
开发用于下一代储能器件的铁电超晶格薄膜
- 批准号:
22K14479 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
ECCS-EPSRC: Superlattice Architectures for Efficient and Stable Perovskite LEDs
ECCS-EPSRC:用于高效稳定钙钛矿 LED 的超晶格架构
- 批准号:
2141949 - 财政年份:2021
- 资助金额:
$ 40万 - 项目类别:
Standard Grant