EAGER: Superlattice-induced polycrystalline and single-crystalline structures in conjugated polymers

EAGER:共轭聚合物中超晶格诱导的多晶和单晶结构

基本信息

  • 批准号:
    2203318
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-02-01 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

NON-TECHNICAL:Polymer semiconductors are promising for flexible electronics. However, their charge carrier mobilities are limited by the highly disordered thin film morphology and trap-dominated charge transport. Thus, it remains a grand challenge to reduce the disorder and realize the full potential of conjugated polymers for charge transport. The goal of this project is to explore a method for epitaxial growth of polymer semiconductor single crystals with two-dimensional metal halide perovskite (MHP) single crystals as interacting substrates. If successful, it will allow direct measurement of intrinsic intra- and interchain charge transport in polymer semiconductors. With less defects as traps, it may be possible to observe unprecedented charge transport. This work will provide fundamental insights on conjugated polymer heteroepitaxial crystal growth. The techniques investigated here may be further developed in the future for larger-scale assembly and for systematic investigation of the structure-property relationship for charge transport in polymer semiconductors. Breaking the disorder-dominated charge transport limit of conjugated polymers may potentially bring the field to a new level and opens new applications previously not possible for various optoelectronic and sensing applications. The materials investigated here can be readily integrated into teaching, education, and outreach. TECHNICAL:Polymer semiconductors are promising for flexible electronics. However, their charge carrier mobilities are limited by the highly disordered thin film morphology and trap-dominated charge transport. Thus, it remains a grand challenge to reduce the disorder and realize the full potential of conjugated polymers for charge transport. The goal of this project is to explore a method for epitaxial growth of polymer semiconductor single crystals with two-dimensional metal halide perovskite (MHP) single crystals as interacting substrates. If successful, it will allow direct measurement of intrinsic intra- and interchain charge transport in polymer semiconductors. With less defects as traps, it may be possible to observe unprecedented charge transport. Polymer semiconductors will be prepared to systematically investigate structure property relationships for single crystalline structure formation and charge transport. Various types of two-dimensional perovskite single crystals will be used as templates to guide the assembly of organic semiconducting oligomers and polymers. This work will provide fundamental insights on conjugated polymer heteroepitaxial crystal growth. The techniques investigated here may be further developed in the future for larger-scale assembly and for systematic investigation of the structure-property relationship for charge transport in polymer semiconductors. Breaking the disorder-dominated charge transport limit of conjugated polymers may potentially bring the field to a new level and opens new applications previously not possible for various optoelectronic and sensing applications. The materials investigated here can be readily integrated into teaching, education, and outreach. .This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术:聚合物半导体在柔性电子领域很有前途。然而,它们的载流子迁移受到高度无序的薄膜形态和陷阱主导的电荷传输的限制。因此,如何减少其无序性并充分发挥共轭聚合物在电荷传输方面的潜力仍然是一个巨大的挑战。本项目的目的是探索一种以二维金属卤化物钙钛矿(MHP)单晶作为相互作用衬底的聚合物半导体单晶外延生长方法。如果成功,它将允许直接测量聚合物半导体内部和链间的电荷传输。由于陷阱缺陷较少,有可能观察到前所未有的电荷输运。这项工作将为共轭聚合物异质外延晶体的生长提供基础性的见解。本文研究的技术可以在未来进一步发展,用于更大规模的组装和对聚合物半导体中电荷输运的结构-性质关系的系统研究。打破共轭聚合物的无序主导电荷输运限制可能会将该领域提升到一个新的水平,并为各种光电和传感应用开辟了以前无法实现的新应用。这里调查的材料可以很容易地整合到教学、教育和推广中。技术:聚合物半导体在柔性电子领域很有前途。然而,它们的载流子迁移受到高度无序的薄膜形态和陷阱主导的电荷传输的限制。因此,如何减少其无序性并充分发挥共轭聚合物在电荷传输方面的潜力仍然是一个巨大的挑战。本项目的目的是探索一种以二维金属卤化物钙钛矿(MHP)单晶作为相互作用衬底的聚合物半导体单晶外延生长方法。如果成功,它将允许直接测量聚合物半导体内部和链间的电荷传输。由于陷阱缺陷较少,有可能观察到前所未有的电荷输运。聚合物半导体的制备将系统地研究单晶结构形成和电荷输运的结构性质关系。各种类型的二维钙钛矿单晶将被用作模板来指导有机半导体低聚物和聚合物的组装。这项工作将为共轭聚合物异质外延晶体的生长提供基础性的见解。本文研究的技术可以在未来进一步发展,用于更大规模的组装和对聚合物半导体中电荷输运的结构-性质关系的系统研究。打破共轭聚合物的无序主导电荷输运限制可能会将该领域提升到一个新的水平,并为各种光电和传感应用开辟了以前无法实现的新应用。这里调查的材料可以很容易地整合到教学、教育和推广中。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Zhenan Bao其他文献

Novel Photonic Materials Containing Porphyrin Rings
含有卟啉环的新型光子材料
  • DOI:
    10.1007/978-1-4613-0669-6_24
  • 发表时间:
    1990
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhenan Bao;Luping Yu
  • 通讯作者:
    Luping Yu
Air-Stable n-type Conductors and Semiconductors
  • DOI:
  • 发表时间:
    2015-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhenan Bao
  • 通讯作者:
    Zhenan Bao
Synthesis and physical measurements of a photorefractive polymer
光折变聚合物的合成和物理测量
New polymers for single-layer LEDs
用于单层 LED 的新型聚合物
  • DOI:
  • 发表时间:
    1999
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhonghua Peng;Zhenan Bao;M. Galvin
  • 通讯作者:
    M. Galvin
On Stress: Combining Human Factors and Biosignals to Inform the Placement and Design of a Skin-like Stress Sensor
关于压力:结合人为因素和生物信号,为类皮肤压力传感器的放置和设计提供信息
  • DOI:
    10.1145/3613904.3643473
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yasser Khan;M. Mauriello;Parsa Nowruzi;Akshara Motani;Grace Hon;N. Vitale;Jinxing Li;Ja;Amir Foudeh;Dalton Duvio;Erika Shols;M. Chesnut;James A. Landay;Jan Liphardt;Leanne M Williams;Keith D. Sudheimer;Boris Murmann;Zhenan Bao;P. Paredes
  • 通讯作者:
    P. Paredes

Zhenan Bao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Zhenan Bao', 18)}}的其他基金

Two-way shape-memory polymer design based on periodic dynamic crosslinks inducing supramolecular nanostructures
基于周期性动态交联诱导超分子纳米结构的双向形状记忆聚合物设计
  • 批准号:
    2342272
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
FMRG: Genetically-targeted chemical assembly (GTCA) of functional structures in living cells, tissues, and animals
FMRG:活细胞、组织和动物功能结构的基因靶向化学组装 (GTCA)
  • 批准号:
    2037164
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
SenSE: Artificial Intelligence-enabled Multimodal Stress Sensing for Precision Health
SenSE:人工智能支持的多模态压力传感,实现精准健康
  • 批准号:
    2037304
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
DMREF: High-Throughput Morphology Prediction for Organic Solar Cells
DMREF:有机太阳能电池的高通量形态预测
  • 批准号:
    1434799
  • 财政年份:
    2014
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Patterning of Large Array Organic Semiconductor Single Crystals
大阵列有机半导体单晶的图案化
  • 批准号:
    1303178
  • 财政年份:
    2013
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Liquid phase organic transistor sensor platform based on surface sorted semiconducting carbon nanotubes for small molecules and biological targets
基于表面排序半导体碳纳米管的用于小分子和生物目标的液相有机晶体管传感器平台
  • 批准号:
    1101901
  • 财政年份:
    2012
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Materials World Network: Understanding the Design and Characterization of Air-Stable N-Type Charge Transfer Dopants for Organic Electronics
材料世界网络:了解有机电子器件空气稳定 N 型电荷转移掺杂剂的设计和表征
  • 批准号:
    1209468
  • 财政年份:
    2012
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
2010 Electronic Processes in Organic Materials Gordon Research Conference; Mount Holyoke College; South Hadley, MA; July 25-30, 2010
2010年有机材料电子过程戈登研究会议;
  • 批准号:
    0968209
  • 财政年份:
    2010
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Single Molecule Devices with Self-Aligned Contacts
具有自对准接触的单分子器件
  • 批准号:
    1006989
  • 财政年份:
    2010
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Mechanistic Studies of Carbon Naotube Sorting on Functional Surfaces
功能表面碳纳米管分选机理研究
  • 批准号:
    0901414
  • 财政年份:
    2009
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant

相似海外基金

CO2-coupled photothermal catalysis on superlattice structures
超晶格结构上的 CO2 耦合光热催化
  • 批准号:
    DP240102707
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Discovery Projects
Resonant tunneling diode Terahertz oscillator with superlattice heterostructure for high output power
具有超晶格异质结构的谐振隧道二极管太赫兹振荡器,可实现高输出功率
  • 批准号:
    24K17329
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Potassium Atoms in 2D Triangular Superlattice
二维三角形超晶格中的钾原子
  • 批准号:
    2309300
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Investigation of Carrier Transport Process in Undulated Superlattice and Development of High Carrier Density Solar Cells for Hydrogen Production
起伏超晶格中载流子输运过程的研究及高载流子密度制氢太阳能电池的开发
  • 批准号:
    22KJ0955
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
ECCS-EPSRC Superlattice Architectures for Efficient and Stable Perovskite LEDs
用于高效稳定钙钛矿 LED 的 ECCS-EPSRC 超晶格架构
  • 批准号:
    EP/V06164X/1
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Research Grant
Self-assembly of modified nanocomposite tectons (NCTs) into superlattice structures for self-healing materials
将改性纳米复合材料(NCT)自组装成超晶格结构,用于自修复材料
  • 批准号:
    567947-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Realization of integrated high sensitivity electric field sensor using quantum dot superlattice
利用量子点超晶格实现集成高灵敏度电场传感器
  • 批准号:
    22K04218
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of ferroelectric superlattice thin films for next-generation energy storage devices
开发用于下一代储能器件的铁电超晶格薄膜
  • 批准号:
    22K14479
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
ECCS-EPSRC Superlattice Architectures for Efficient and Stable Perovskite LEDs
用于高效稳定钙钛矿 LED 的 ECCS-EPSRC 超晶格架构
  • 批准号:
    EP/V061747/1
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Research Grant
ECCS-EPSRC: Superlattice Architectures for Efficient and Stable Perovskite LEDs
ECCS-EPSRC:用于高效稳定钙钛矿 LED 的超晶格架构
  • 批准号:
    2141949
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了