Proportional Hazards Model for Various Types of Censored Survival Data with Longitudinal Covariates

具有纵向协变量的各类删失生存数据的比例风险模型

基本信息

  • 批准号:
    1232424
  • 负责人:
  • 金额:
    $ 5.95万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-11-15 至 2013-08-31
  • 项目状态:
    已结题

项目摘要

The interrelationships between time-to-event (survival time) variable and longitudinal covariates is often the primary research interest in medical and epidemiological studies. Due to the challenges encountered in some important clinical trials on AIDS and cancer research, recently the statisticians started modeling survival data and longitudinal data jointly via Cox's proportional hazards model. Such a joint modeling procedure or methodology has broad applications in many scientific research fields, but it is a considerably difficult problem due to censoring on the survival time and that the covariate process is only observed at some given time points. Up to now, statistical methods on this topic have not been fully or well developed, while the importance and needs for developing these methods have become more evident when the proposer and her collaborators recently encountered some more complicated problems which have not been studied in statistical literature; see examples listed below. Specifically, there have not been any modeling procedures that directly study the relationship between survival time and within-subject historic patterns of change in longitudinal covariates, nor have there been any works on joint modeling doubly censored or interval censored survival data together with (intensive or multi-phase intensive) longitudinal covariates, which is far more challenging than right censored data problem. In fact, there have been no published works on the Cox model with doubly censored data, not even for the case with time-independent covariates. In this research, asymptotic methods and simulations will be mainly used in the studies, and the issues under consideration include: (a) derivation of the empirical likelihood based MLE for the Cox model with longitudinal covariates for right censored, doubly censored and interval censored survival data, respectively; (b) computation algorithms for the MLE; (c) asymptotic properties of the MLE; (d) Wilk's theorem for the MLE; (e) goodness-of-fit tests for the Cox model; (f) comparison with alternative methods. At least two Ph.D. students of the proposer will be involved in and benefit from the proposed research. The new statistical methodology to be developed in this project has direct impact to medical research, epidemiology, social and behavioral sciences, etc. For instance, the data examples which we have encountered and motivate the research of this project include the following problems on joint modeling survival time and longitudinal covariates. In a prostate cancer study on mice, part of the research focus is joint modeling interval censored survival time and longitudinal covariates. In a smoking cessation study, the research focus is joint modeling right censored survival time and intensive longitudinal covariates. In a recent study of child development, the research focus is joint modeling doubly censored survival time and multi-phase intensive longitudinal covariates.
事件发生时间(生存时间)变量和纵向协变量之间的相互关系通常是医学和流行病学研究中的主要研究兴趣。由于艾滋病和癌症研究在一些重要的临床试验中遇到了挑战,最近统计学家开始利用Cox的比例风险模型对生存数据和纵向数据进行联合建模。这种联合建模程序或方法在许多科学研究领域都有广泛的应用,但由于生存时间的截尾和协变量过程只在给定的时间点观察到,这是一个相当困难的问题。到目前为止,关于这一主题的统计方法还没有得到充分或很好的发展,而当提出者和她的合作者最近遇到一些统计文献中没有研究过的更复杂的问题时,发展这些方法的重要性和必要性变得更加明显;见下面列出的例子。具体地说,还没有任何直接研究生存时间与被试内部纵向协变量历史变化模式之间关系的建模方法,也没有任何关于双删失或区间删失生存数据与(密集或多阶段密集)纵向协变量的联合建模的工作,这比右删失数据问题更具挑战性。事实上,目前还没有关于双删失数据的Cox模型的研究成果,甚至在协变量与时间无关的情况下也是如此。在本研究中,将主要使用渐近方法和模拟方法,所考虑的问题包括:(A)右删失、双删失和区间删失生存数据的纵向协变量Cox模型的基于经验似然的最大似然估计的推导;(B)MLE的计算算法;(C)MLE的渐近性质;(D)MLE的Wilk定理;(E)Cox模型的拟合优度检验;(F)与其他方法的比较。申请人的至少两名博士生将参与这项拟议的研究并从中受益。这个项目将要开发的新的统计方法对医学研究、流行病学、社会和行为科学等都有直接的影响。例如,我们遇到的数据例子激励了这个项目的研究,包括以下关于联合建模生存时间和纵向协变量的问题。在一项针对小鼠的前列腺癌研究中,部分研究重点是联合建模区间截尾生存时间和纵向协变量。在戒烟研究中,研究重点是联合建模右截尾生存时间和密集的纵向协变量。在最近的一项儿童发展研究中,研究焦点是联合建模双删失生存时间和多阶段密集的纵向协变量。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jian-Jian Ren其他文献

Empirical likelihood bivariate nonparametric maximum likelihood estimator with right censored data

Jian-Jian Ren的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jian-Jian Ren', 18)}}的其他基金

Nonparametric Maximum Likelihood Estimators for Multivariate Distributions and Related Inference Problems with Various Types of Censored Data
多元分布的非参数最大似然估计以及各种类型截尾数据的相关推理问题
  • 批准号:
    1407461
  • 财政年份:
    2014
  • 资助金额:
    $ 5.95万
  • 项目类别:
    Continuing Grant
Proportional Hazards Model for Various Types of Censored Survival Data with Longitudinal Covariates
具有纵向协变量的各类删失生存数据的比例风险模型
  • 批准号:
    0905772
  • 财政年份:
    2009
  • 资助金额:
    $ 5.95万
  • 项目类别:
    Standard Grant
Further Studies on Weighted Empirical Likelihood
加权经验似然的进一步研究
  • 批准号:
    0604488
  • 财政年份:
    2006
  • 资助金额:
    $ 5.95万
  • 项目类别:
    Continuing Grant
Weighted Empirical Likelihood
加权经验似然
  • 批准号:
    0204182
  • 财政年份:
    2002
  • 资助金额:
    $ 5.95万
  • 项目类别:
    Standard Grant
Clifford Conference
克利福德会议
  • 批准号:
    9803801
  • 财政年份:
    1998
  • 资助金额:
    $ 5.95万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Leveraged Bootstrap
数学科学:利用 Bootstrap
  • 批准号:
    9796229
  • 财政年份:
    1997
  • 资助金额:
    $ 5.95万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Leveraged Bootstrap
数学科学:利用 Bootstrap
  • 批准号:
    9626532
  • 财政年份:
    1996
  • 资助金额:
    $ 5.95万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Self-Consistent Estimators, Bootstrap and Censored Data
数学科学:自洽估计、引导和审查数据
  • 批准号:
    9510376
  • 财政年份:
    1995
  • 资助金额:
    $ 5.95万
  • 项目类别:
    Standard Grant

相似海外基金

Sieve based full likelihood approach for the Cox proportional hazards model with applications to immunotherapies trials
基于筛法的 Cox 比例风险模型的完全似然法及其在免疫治疗试验中的应用
  • 批准号:
    10577723
  • 财政年份:
    2023
  • 资助金额:
    $ 5.95万
  • 项目类别:
Model Development for Evaluating Disaster Prevention and Reconstruction Policies with a Focus on Multiple Hazards, Social Disturbance and Economic Growth
以多重灾害、社会动荡和经济增长为重点的防灾和重建政策评估模型开发
  • 批准号:
    20H02272
  • 财政年份:
    2020
  • 资助金额:
    $ 5.95万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Developing methods and software for fitting the Cox proportional hazards model to partly interval-censored data
开发将 Cox 比例风险模型拟合到部分区间删失数据的方法和软件
  • 批准号:
    10321299
  • 财政年份:
    2020
  • 资助金额:
    $ 5.95万
  • 项目类别:
GOALI: Collaborative Research: Model-Predictive Safety Systems for Predictive Detection of Operation Hazards
GOALI:协作研究:用于预测检测操作危险的模型预测安全系统
  • 批准号:
    1704833
  • 财政年份:
    2017
  • 资助金额:
    $ 5.95万
  • 项目类别:
    Standard Grant
Development of a Standard Model for an All-Hazards Approach to Urban Disasters in Areas Surrounding Large-Scale Terminal Stations
大型车站周边地区城市灾害全灾害标准模型的开发
  • 批准号:
    17K01340
  • 财政年份:
    2017
  • 资助金额:
    $ 5.95万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
GOALI: Collaborative Research: Model-Predictive Safety Systems for Predictive Detection of Operation Hazards
GOALI:协作研究:用于预测检测操作危险的模型预测安全系统
  • 批准号:
    1704915
  • 财政年份:
    2017
  • 资助金额:
    $ 5.95万
  • 项目类别:
    Standard Grant
Hazards SEES Type 1: Predicting Landslide Runout and Granular Flow Hazard: Enhanced-g Centrifuge Experiments, Contact Dynamics Model Development and Theoretical Study
灾害 SEES 类型 1:预测滑坡跳动和颗粒流灾害:增强型离心机实验、接触动力学模型开发和理论研究
  • 批准号:
    1331499
  • 财政年份:
    2013
  • 资助金额:
    $ 5.95万
  • 项目类别:
    Standard Grant
Development of analytical procedure using phenomenalistic mathematical model for phase change-dependent geotechnical hazards in snowy cold regions
使用现象数学模型开发雪寒地区相变相关岩土灾害的分析程序
  • 批准号:
    24651204
  • 财政年份:
    2012
  • 资助金额:
    $ 5.95万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Statistical theory and the evaluation of Cox's proportional hazards model regularized by various penalties for survival DNA microarray expression data
统计理论和对存活 DNA 微阵列表达数据的各种惩罚进行正则化的 Cox 比例风险模型的评估
  • 批准号:
    24650149
  • 财政年份:
    2012
  • 资助金额:
    $ 5.95万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Development of an adaptive statistical model for oceanic flooding hazards along the East Australian coast.
开发澳大利亚东海岸海洋洪水灾害的自适应统计模型。
  • 批准号:
    LP100100375
  • 财政年份:
    2010
  • 资助金额:
    $ 5.95万
  • 项目类别:
    Linkage Projects
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了