Stability, Sensitivity and Optimization of Stochastic Systems

随机系统的稳定性、敏感性和优化

基本信息

  • 批准号:
    1234100
  • 负责人:
  • 金额:
    $ 28万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-09-01 至 2015-08-31
  • 项目状态:
    已结题

项目摘要

This award provides funding for the development of analytical and computational tools for determining the sensitivity to system parameters of both transient and steady-state performance measures in queueing networks. Standard numerical methods to calculate sensitivity of performance measures with a high level of accuracy are usually computationally prohibitive because they involve a two-step approach of first obtaining numerical approximations of expectations of performance measures at different parameter values and then numerical differentiation of these approximate expectations. This work aims to provide a more tractable analytical characterization of the sensitivity in terms of a single expectation, and to then use this characterization to develop efficient one-step algorithms for the computation of sensitivities. In particular, this extends approaches that have been used in finance and other domains to queueing networks, where the issue is far more subtle due to the presence of boundaries. This award also supports research in the study of many-server queues, with the goal of obtaining tractable approximations for transient and steady-state performance measures associated with many-server queues. New tools will be developed for the analysis of stability in such systems and obtaining tractable approximations of steady state and transient performance measures and applied for optimal system design.Due to uncertainty in parameters, computation of sensitivities are very important for design and capacity allocation in queueing networks. The development of efficient computational tools would greatly enhance the planning capabilities of companies with manufacturing processes governed by queueing networks. Many-server queues arise in diverse applications such as call centers, health-care and data centers. In applications, knowledge of steady state and transient performance measures are required for staffing and decisions, the efficiency of which can have significant economic and social impact. In addition, this research will also develop new mathematical tools that will be applicable in a broader setting.
该奖项提供资金,用于开发分析和计算工具,以确定对瞬态和稳态性能测量的系统参数的灵敏度。 标准的数值方法来计算灵敏度的性能指标具有高水平的准确性通常是计算上禁止的,因为它们涉及一个两步的方法,首先获得数值近似的期望值的性能指标在不同的参数值,然后数值微分这些近似的期望。 这项工作的目的是提供一个更易于处理的分析表征的灵敏度在一个单一的期望,然后使用此特性开发有效的一步算法的灵敏度的计算。 特别是,这将金融和其他领域中使用的方法扩展到了社交网络,由于边界的存在,这个问题要微妙得多。 该奖项还支持多服务器队列的研究,目标是获得易于处理的 与多服务器队列相关的瞬态和稳态性能度量的近似值。 由于参数的不确定性,灵敏度的计算对于配电网的设计和容量分配是非常重要的。 有效的计算工具的发展将大大提高公司的规划能力,制造过程由制造网络管理。 多服务器队列出现在呼叫中心、医疗保健和数据中心等各种应用中。 在应用程序中,稳态和瞬态性能的措施的知识需要人员配置和决策,其效率可以有重大的经济和社会影响。 此外,这项研究还将开发新的数学工具,适用于更广泛的环境。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kavita Ramanan其他文献

Quenched large deviation principles for random projections of math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg" class="math"msubsupmrowmiℓ/mi/mrowmrowmip/mi/mrowmrowmin/mi/mrow/msubsup/math balls
数学随机投影的淬火大偏差原理 xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg" 类="数学" msubsup mrow mi ℓ/mi/mrow mrow mip/mi/mrow mrow min/mi/mrow/msubsup 数学球
  • DOI:
    10.1016/j.jfa.2025.110937
  • 发表时间:
    2025-09-15
  • 期刊:
  • 影响因子:
    1.600
  • 作者:
    Patrick Lopatto;Kavita Ramanan;Xiaoyu Xie
  • 通讯作者:
    Xiaoyu Xie
The $\ell_r$-Levy-Grothendieck problem and $r\rightarrow p$ norms of Levy matrices
$ell_r$-Levy-Grothendieck 问题和 Levy 矩阵的 $r ightarrow p$ 范数
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kavita Ramanan;Xiaoyu Xie
  • 通讯作者:
    Xiaoyu Xie
The fundamental martingale with applications to Markov Random Fields
基本鞅及其在马尔可夫随机场中的应用
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kevin Hu;Kavita Ramanan;William Salkeld
  • 通讯作者:
    William Salkeld
On the large deviation rate function for marked sparse random graphs
关于有标记稀疏随机图的大偏差率函数
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kavita Ramanan;S. Yasodharan
  • 通讯作者:
    S. Yasodharan
A Mimicking Theorem for processes driven by fractional Brownian motion
分数布朗运动驱动过程的拟态定理
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kevin Hu;Kavita Ramanan;William Salkeld
  • 通讯作者:
    William Salkeld

Kavita Ramanan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kavita Ramanan', 18)}}的其他基金

Rare Events and High-Dimensional Stochastic Systems
稀有事件和高维随机系统
  • 批准号:
    2246838
  • 财政年份:
    2023
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
Interacting Particle Systems and Mean-field games Workshops
交互粒子系统和平均场游戏研讨会
  • 批准号:
    2207572
  • 财政年份:
    2022
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
Analysis of High-Dimensional Stochastic Systems
高维随机系统分析
  • 批准号:
    1954351
  • 财政年份:
    2020
  • 资助金额:
    $ 28万
  • 项目类别:
    Continuing Grant
2018 Stochastic Networks Conference and Summer School in Applied Probability
2018年随机网络会议暨应用概率暑期学校
  • 批准号:
    1822084
  • 财政年份:
    2018
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
"High-dimensional random phenomena and rare events"
《高维随机现象和罕见事件》
  • 批准号:
    1713032
  • 财政年份:
    2017
  • 资助金额:
    $ 28万
  • 项目类别:
    Continuing Grant
Women's Intellectual Networking Research Symposium
女性知识网络研究研讨会
  • 批准号:
    1727318
  • 财政年份:
    2017
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
Rigorous Approximations of Stochastic Network Dynamics, with Applications to Real-World Networks
随机网络动力学的严格近似及其在现实世界网络中的应用
  • 批准号:
    1538706
  • 财政年份:
    2015
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
Problems at the Interface of Stochastics and Analysis
随机学与分析的交叉问题
  • 批准号:
    1407504
  • 财政年份:
    2014
  • 资助金额:
    $ 28万
  • 项目类别:
    Continuing Grant
Travel Grant for the Applied Probability Society Conference
应用概率学会会议旅费补助金
  • 批准号:
    1114608
  • 财政年份:
    2011
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
Analysis of Large-Scale Stochastic Systems
大规模随机系统分析
  • 批准号:
    1052750
  • 财政年份:
    2010
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant

相似海外基金

Hierarchical Geometric Accelerated Optimization, Collision-based Constraint Satisfaction, and Sensitivity Analysis for VLSI Chip Design
VLSI 芯片设计的分层几何加速优化、基于碰撞的约束满足和灵敏度分析
  • 批准号:
    2307801
  • 财政年份:
    2023
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
Modeling and Design Optimization of High Frequency Micro and Nano Structures Exploiting Adjoint Sensitivity Analysis
利用伴随灵敏度分析的高频微纳米结构建模和设计优化
  • 批准号:
    RGPIN-2016-05451
  • 财政年份:
    2021
  • 资助金额:
    $ 28万
  • 项目类别:
    Discovery Grants Program - Individual
A simulation-based technology for stochastic modeling, sensitivity analysis and design optimization, aimed at development of next-generation micro-fluidic devices for biomedical applications.
一种用于随机建模、灵敏度分析和设计优化的模拟技术,旨在开发用于生物医学应用的下一代微流体设备。
  • 批准号:
    10323474
  • 财政年份:
    2021
  • 资助金额:
    $ 28万
  • 项目类别:
Preprocessing and Sensitivity Analysis for Cone Optimization
锥体优化的预处理和灵敏度分析
  • 批准号:
    551972-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 28万
  • 项目类别:
    University Undergraduate Student Research Awards
Modeling and Design Optimization of High Frequency Micro and Nano Structures Exploiting Adjoint Sensitivity Analysis
利用伴随灵敏度分析的高频微纳米结构建模和设计优化
  • 批准号:
    RGPIN-2016-05451
  • 财政年份:
    2020
  • 资助金额:
    $ 28万
  • 项目类别:
    Discovery Grants Program - Individual
Modeling and Design Optimization of High Frequency Micro and Nano Structures Exploiting Adjoint Sensitivity Analysis
利用伴随灵敏度分析的高频微纳米结构建模和设计优化
  • 批准号:
    RGPIN-2016-05451
  • 财政年份:
    2019
  • 资助金额:
    $ 28万
  • 项目类别:
    Discovery Grants Program - Individual
Modeling and Design Optimization of High Frequency Micro and Nano Structures Exploiting Adjoint Sensitivity Analysis
利用伴随灵敏度分析的高频微纳米结构建模和设计优化
  • 批准号:
    RGPIN-2016-05451
  • 财政年份:
    2018
  • 资助金额:
    $ 28万
  • 项目类别:
    Discovery Grants Program - Individual
Qualitative sensitivity analysis for multi-commodity flow problems; cost allocation in K-Centrum optimization problems and toxic waste disposal problems
多商品流动问题的定性敏感性分析;
  • 批准号:
    3998-2013
  • 财政年份:
    2017
  • 资助金额:
    $ 28万
  • 项目类别:
    Discovery Grants Program - Individual
Modeling and Design Optimization of High Frequency Micro and Nano Structures Exploiting Adjoint Sensitivity Analysis
利用伴随灵敏度分析的高频微纳米结构建模和设计优化
  • 批准号:
    RGPIN-2016-05451
  • 财政年份:
    2017
  • 资助金额:
    $ 28万
  • 项目类别:
    Discovery Grants Program - Individual
Sensitivity analysis of the value function of parametric optimization problems
参数优化问题价值函数的敏感性分析
  • 批准号:
    509632-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 28万
  • 项目类别:
    University Undergraduate Student Research Awards
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了